
Integrating Sporadic Events in Time-triggered
Systems via Affine Envelope Approximations

Anaı̈s Finzi
TTTech Computertechnik AG

Vienna, Austria
anais.finzi@tttech.com

Silviu S. Craciunas
TTTech Computertechnik AG

Vienna, Austria
silviu.craciunas@tttech.com

Marc Boyer
ONERA / DTIS, Université de Toulouse

F-31055 Toulouse, France
marc.boyer@onera.fr

Abstract—We introduce a new paradigm for synthesizing time-
triggered schedules that guarantees the correct temporal behavior
of time-triggered (TT) tasks and the schedulability of sporadic
event-triggered (ET) tasks with arbitrary deadlines at design
time. The approach first expresses a constraint for the TT task
schedule in the form of a maximal affine envelope that ensures
that as long as the schedule generation respects this envelope,
all sporadic ET tasks meet their deadline. The second step
consists of modeling this envelope as a burst limiting constraint
(BLC) and building the schedule. The BLC constraint can be
added to any existing TT schedule generation method as an
additional constraint on the TT slot positioning. Here, we propose
an efficient TT schedule generation method that integrates the
BLC constraint via simulating a modified Least-Laxity-First
(LLF) scheduler. We show via synthetic and real-world test
cases that our novel method achieves better schedulability and a
faster schedule generation for most use cases compared to other
approaches inspired by, e.g., hierarchical scheduling. Moreover,
we present an extension to our method that finds the most
favorable schedule for TT tasks with respect to ET schedulability,
thus increasing the probability that the system remains feasible
when ET tasks are later added or changed.

I. INTRODUCTION

Time-triggered systems are routinely used in aerospace
where the safety-critical nature of the applications and strin-
gent certification requirements impose a high level of deter-
minism [1], [2]. Recently, a survey of 120 industry prac-
titioners working with real-time systems showed that 68%
of respondents use static schedules to help improve timing
predictability and 54% use time-triggered (TT) scheduling in
their systems [3]. Moreover, the use of TT solutions is also
gaining importance in automotive [2], [4], [5], [6] driven by
the centralization of functionality onto integrated platforms
(c.f. [7]) in order to support the complex real-time require-
ments of, e.g., advanced driver-assistance systems (ADAS) [8],
[9], [10]. In particular, the complex jitter and multi-rate
cause-effect requirements of ADAS applications [11], [12]
cannot be easily guaranteed off-line using classical approaches
and require a more predictable time-triggered architecture
(TTA) [9], [13], [10]. While TTA has many benefits in terms of
predictability, stability, compositionality, and determinism, the
use of static schedules is notoriously inefficient at integrating
sporadic event-driven tasks (ET). Conversely, pure event-
triggered systems suffer from many drawbacks compared to
a time-triggered execution, e.g., high jitter and starvation

(c.f [14], [15], [16]). Modern safety-critical systems benefit
most from combining the two paradigms.

For time-triggered systems, where the schedule table is
statically computed at design time, sporadic event-triggered
(ET) tasks are usually handled within specially allocated
slots or when time-triggered (TT) tasks finish their execution
earlier than their worst-case assumption. While there is a
significant body of work (c.f. [17] for an extensive survey)
concerning pure time-triggered schedule generation, which
is an NP-complete problem, most of the methods do not
consider the schedulability of sporadic ET tasks. Traditionally,
the integration of sporadic ET tasks in time-triggered systems
is either done via a feedback loop between the TT schedule
generation mechanism and an ET schedulability test [18], [19]
or via hierarchical scheduling [20], [21], [22], [23], [24]. For
both approaches, the computational effort (besides creating TT
schedules) can be significant due to the response-time analysis
for each variation of TT slot placement or due to solving
the server design problem within the TT schedulability space.
Therefore, the challenge is to create static schedule tables for
which both TT and ET tasks respect their deadlines while
keeping the computational effort low.

We present a novel approach in which we first compute
a maximal affine envelope (defined by a maximum burst
and a rate) for the TT tasks in the system, such that as
long as a TT schedule respects this envelope, all sporadic
ET tasks meet their deadlines. The second step involves
expressing this envelope as a burst limiting constraint (BLC)
on the TT schedule and building the static schedule table.
The BLC can be integrated as an additional constraint on
TT slot placement into any existing method to generate TT
schedules (e.g. [25], [9], [26]) for modern distributed multi-
core multi-SoC platforms (c.f. [8], [9]) executing task with
multi-rate chain dependencies [12], [27], [11]. We also propose
an efficient method of generating TT schedules while inte-
grating the BLC constraint via simulating a modified Least-
Laxity-First (LLF) scheduler and a multi-core extension for
partitioned systems. Using our novel technique, we achieve
considerably better schedulability compared to the existing
approaches while having lower runtimes in almost all cases.
Moreover, our method enables an efficient design optimization
technique for iterative design processes where ET tasks are
added or changed later. Our contributions, therefore, are:

Silviu Craciunas
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record is available at https://doi.org/10.1109/RTAS61025.2024.00010

"TTTech - Internal"

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Idle slots

Fixed-
priority
scheduling

<latexit sha1_base64="j3tlmN9RpQFQaoN8cfYQN1rkjHY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9p2vf65Ypbdecgq8TLSQVyNPrlr94gZmnEFTJJjel6boJ+RjUKJvm01EsNTygb0yHvWqpoxI2fza+dkjOrDEgYa1sKyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J47WdCJSlyxRaLwlQSjMnsdTIQmjOUE0so08LeStiIasrQBlSyIXjLL6+S1kXVu6zW7muV+k0eRxFO4BTOwYMrqMMdNKAJDB7hGV7hzYmdF+fd+Vi0Fpx85hj+wPn8AUvrjvU=</latexit>⌧1
<latexit sha1_base64="Dg+n3LdLoGQy2+Nj8vbqb1LYQGk=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHoxWMF+wFtKJvtpl27yYbdiVBC/4MXD4p49f9489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23jEo1402mpNKdgBouRcybKFDyTqI5jQLJ28H4dua3n7g2QsUPOEm4H9FhLELBKFqp1UOa9qv9UtmtuHOQVeLlpAw5Gv3SV2+gWBrxGJmkxnQ9N0E/oxoFk3xa7KWGJ5SN6ZB3LY1pxI2fza+dknOrDEiotK0YyVz9PZHRyJhJFNjOiOLILHsz8T+vm2J47WciTlLkMVssClNJUJHZ62QgNGcoJ5ZQpoW9lbAR1ZShDahoQ/CWX14lrWrFu6zU7mvl+k0eRwFO4QwuwIMrqMMdNKAJDB7hGV7hzVHOi/PufCxa15x85gT+wPn8AU1vjvY=</latexit>⌧2

TT TT TT TT TT TT TTTT schedule

Fig. 1: Time-triggered schedule table with 2nd-level fixed-priority scheduling in idle slots.

• a new and efficient approach via affine envelopes for guaran-
teeing the schedulability of ET tasks with arbitrary deadlines
without the need for complex response-time analysis,

• a method to express the affine envelope as a burst limiting
constraint (BLC) that can be integrated into any existing TT
schedule synthesis algorithm,

• an LLF-based algorithm that respects the BLC constraint
and generates correct TT schedules wrt. TT and ET tasks,

• a design optimization where we maximize the solution space
for changing or adding ET tasks without modifying the
existing TT schedule generated via our method.

• an extension for (semi-)partitioned multi-core platforms like
those found in, e.g., modern automotive systems [28], [5].
We introduce some necessary preliminaries, including the

system model, a short review of real-time calculus, and related
work in Sec. II. We then present our novel method based on
affine envelope approximations in Sec. III and evaluate it in
Sec. IV. Finally, we conclude the paper in Sec. V.

II. PRELIMINARIES

A. System model

We assume a task dispatcher that schedules TT tasks based
on an offline generated static schedule table (cyclic executive)
and, in the slots that are left for ET tasks, implements a
2nd-level preemptive scheduler based on fixed priorities (c.f.
Fig. 1). We denote the set of TT and ET tasks with T TT

and T ET , respectively. A TT or ET task τi is defined by the
tuple (Ci, Ti, Di) with Ci denoting the computation time and
Di being the relative deadline of the task. For TT tasks, Ti

represents the period, while for ET tasks, where we assume a
sporadic model, it describes the minimal inter-arrival distance
(MIT). Usually, TT tasks have a constrained-deadline model
(Di ≤ Ti), while ET tasks can have an arbitrary deadline, i.e.,
it can also be larger than the inter-arrival time. We introduce
a few notations to ease readability. For any task τi, p(i) is
the priority of the task, Ui = Ci

Ti
is the utilization of the

task τi, UTT =
∑

τi∈T TT Ui is the utilization of all TT
tasks, UET =

∑
τi∈T ET Ui is the utilization of all ET tasks.

Using the same pattern, we define CTT =
∑

τi∈T TT Ci, the
computation time of all TT tasks. For convenience, we say that
all TT tasks share the same (highest) priority. Event-triggered
tasks, having a lower priority than TT tasks, are ordered and
indexed according to their relative priorities, i.e., τi having
a higher priority than τj (p(i) > p(j)) implies i > j. When
tasks have equal priority (p(i) = p(j)), either FIFO or the task
id can be used as a tie-breaker. Sometimes, FIFO can lead
to arbitrary execution ordering when task jobs are released

simultaneously; hence, a safer alternative is to use the task id
as a tie-breaker. Our method works with any option.

The scheduling timeline is divided into equal segments by
the microtick mt (also called slot length), representing the
smallest scheduling granularity for tasks [29], [30]. In the
following, we assume that ∀τi, Di, Ci, Ti are multiples of mt.
A static schedule σ consists of a set of slots [t ·mt, (t+1) ·mt)
with each slot being idle or executing a TT task. Each schedule
σ is repeated after the so-called hyperperiod HP (schedule
cycle), which is either the least common multiple of the TT
task periods or a multiple thereof (c.f. Sec. III-C). While
we focus on unit-speed processors, we denote the processor
capacity with the more generic λ to express that our method is
also applicable to sub-unit processor speeds when, e.g., CPU
frequency scaling is used (c.f. [31]).

B. Real-time (and network) calculus

Network Calculus (NC) [32] is a theory for quantifying
worst-case (latency and backlog) bounds in networks. Real-
time calculus (RTC) [33] is the equivalent of NC for analyzing
the worst-case latency of real-time tasks (e.g. [34]). We only
introduce the most important definitions and refer the reader
to [33], [35] for a more in-depth description. Firstly, an arrival
curve α(t) represents a maximum of the cumulative amount
of tasks (i.e., computation time requests) that can arrive in
any time interval. Secondly, a minimum (resp. maximum)
service curve β(t) (resp. γ(t)) represents a minimum (resp.
maximum) of the amount of available computation time in
any time interval. The response time (i.e., delay) of a task τi
of a set of tasks T is detailed in Theorem 1.

Definition 1 (Arrival curve [33]). An arrival curve α(t) of
a request function R(t) is a non-decreasing function which
satisfies: R(t)−R(s) ≤ α(t− s),∀s ≤ t.

Definition 2 (Service curves [33], [36], [37]). A maximum
service curve γ(t) and a minimum service curve β(t) of a
capacity function C(t) are non-negative and non-decreasing
functions satisfying: β(t−s) ≤ C(t)−C(s) ≤ γ(t−s),∀s ≤ t

Theorem 1 (Maximum response time [36]). For a task
dispatcher offering a minimum service curve β(t) to a set of
tasks T with an arrival curve α(t), the worst-case response
time of a task is the maximum horizontal distance hDev(α, β)
computed between α(t) and β(t).

The arrival curve, minimum service curve, and maximum
response time are illustrated in Fig. 2. To compute the response
time of any priority, we use the service curve in Theorem 2.

TTTech - Internal

t

co
m

pu
ta

tio
n

tim
e Arrival curve

Minimum service curve

Maximum response time

Fig. 2: Real-time calculus curves and maximum response time

Theorem 2 (Minimum remaining service curve [38]). For a
preemptive fixed-priority dispatcher of computation capacity
λ, and a set of tasks τi ∈ T with priorities p(i) and
arrival curves αi(t), a minimum service curve remaining to
tasks of priority p is the non-decreasing positive function
βSP
p (t) = [λ · t− α>p(t)]

+
↑ , α>p(t) =

∑
τi∈T ,p(i)>p αi(t),

where the notation []
+
↑ for a function (e.g., g(t)) means

[g(t)]
+
↑ =

(
sup0≤s≤t g(s)

)+
, with (x)

+
= max(0, x).

If a task τi generates jobs of cost Ci ∈ R+ at a rate given by
the period (or minimal inter-arrival time) Ti ∈ R+, it admits
the staircase arrival curve α : R+ → R+, 0 7→ 0 and t 7→
Ci ·⌈t/Ti⌉ if t > 0 [39], and the more pessimistic linear arrival
curve αr,b : R+ → R+, 0 7→ 0 and t 7→ rt+ b if t > 0, with
rate r = Ci

Ti
and burst b = r·Ti [40]. When tasks are scheduled

by a dispatcher in a certain slot, they are usually executed at a
constant rate R (using one unit of computation for every time
unit) after some delay (latency) L, which is due to blocking
by, e.g., other higher-priority tasks. This matches a rate-latency
service [40], modelled by a function βR,L : t 7→ R · [t− L]

+.

Proposition 1. Let r, r′, b, b′, R, L ∈ R+ be some parameters.
Then, we have αr,b(t) + αr′,b′(t) = αr+r′,b+b′(t).
The proofs can be found in [39, Prop. 3.7].

C. Related work

An application model consisting of time- and event-
triggered tasks is used in [18], [19], [41] for distributed
embedded systems. The authors first present an analysis of
periodic ET task schedulability given a pre-defined TT sched-
ule and then use a list-scheduling-based heuristic with limited
backtracking to guide the generation of TT task schedules
and increase ET task schedulability. The “holistic” approach
in [18], [19], [41] is similar to a greedy method for generating
TT schedules, checking the schedulability of ET in the process,
albeit with an improved probability towards ET schedulability
via different heuristics [19]. The method in [18], [19], [41]
assumes strictly-periodic TT task slots (i.e., TT tasks execute
in the same slot in each period instance), non-preemptive
TT tasks, and periodic ET tasks (with bounded offsets and
jitter) which greatly restricts schedulability and applicabil-
ity. In contrast, we assume more generic preemptive, non-
strictly-periodic TT tasks, sporadic ET tasks (which increases
schedulability), and start from the schedulability of ET tasks
to impose constraints on the TT schedule generation.

Meroni et al. [24] describe simple polling (SPoll) and
advanced polling (AdvPoll) to integrate ET and TT tasks in
a multiprocessor partitioned system. SPoll is an obvious and
computationally “cheap” method that assigns to each ET task
τi ∈ T ET its own polling TT task τpi , with an oversampling
period T p

i = ⌊Di+Ci

2 ⌋ and computation time Cp
i = Ci and

Cp
i = ⌈Tp

i

Ti
⌉ · Ci for constrained and arbitrary deadlines,

respectively. AdvPoll is derived from hierarchical scheduling
approaches such as [20], [21], [22], [23] where at one level
there is a fixed-priority scheduler for ET tasks, and at the
underlying layer, a periodic resource abstraction (or periodic
server) is used to separate the generation of the TT schedule
from the schedulability analysis of ET tasks. AdvPoll is based
on the method proposed in [20], where first, the budget and
period of the polling task need to be computed (a version of
the server design problem [21], [20], [42]) and then the polling
tasks is considered as a regular TT task alongside the other
TT tasks in the system when creating the schedule table.

A third category of related work concerns adding flexibility
to the runtime execution of time-triggered schedules to im-
prove performance and allow ET task integration at runtime.
In [43], [44], [45], [30], the Slot-Shifting method is presented,
which allows static TT schedule slots to be moved to execute
sporadic and aperiodic tasks arriving dynamically at runtime.
The method assumes an existing TT schedule and provides
an admission control for dynamically arriving sporadic and
aperiodic ET tasks, as well as slack reclaiming to improve
resource utilization. Moreover, in [45], [30], the authors also
include an efficient offline analysis for known sporadic ET
tasks, which only looks at so-called critical slots to guarantee
ET task schedulability. In Slot-shifting, the schedulability of
ET tasks is highly dependent on the heuristic to initially create
and then change the TT schedule. Moreover, we note that
any method requiring a recomputation of the TT schedule in
case of ET infeasibility (e.g., holistic approach [18], [19] and
Slot-Shifting [45], [44], [30]) will, in the general case, have a
higher runtime compared to our method since we only check
ET schedulability and create the TT schedule once.

III. TT AND ET INTEGRATION VIA AFFINE ENVELOPES

Our main idea is to derive a constraint on the TT schedule
that will guarantee ET task schedulability and then use this
constraint to build a correct TT schedule. First, we derive
a maximal affine envelope for the TT tasks expressed as
token-bucket arrival curve. The envelope is computed such
that as long as a TT schedule respects this envelope, all ET
tasks meet their deadlines (Sec. III-A). The second step is
improving this envelope and expressing it as a burst limiting
constraint (BLC) that can be applied to any TT schedule
generation algorithm (Sec. III-B). Finally, we propose our own
TT schedule generation algorithm that enforces the BLC while
maintaining TT schedulability (Sec. III-C).

Since we know the TT task set, the utilization rate of TT
tasks UTT is known, but the burst bTT of the linear arrival
curve αTT (t) is unknown and depends on the future schedule.
Furthermore, as TT has a higher priority than ET, this burst

bTT impacts the ET response times. Hence, the goal of our
method is first to identify the maximum burst bTT

max such that
the ET tasks fulfill their deadlines, and then to compute a TT
schedule such that an arrival curve of the scheduled TT tasks
is αTT (t) = UTT · t + bTT

max. To do so, we first evaluate the
impact of the TT tasks on the ET tasks and compute bTT

max in
Sec. III-A. Then, in Sec. III-B and III-C we present a scheduler
capable of enforcing αTT (t) = UTT · t+ bTT

max.

A. Computing a maximal affine envelope for TT tasks

To compute the maximum TT burst so that ET task dead-
lines are fulfilled, we first calculate the worst-case response
time (i.e., delay) depending on the TT burst and TT utilization
rate in Theorem 4, then we deduce the maximum admissible
TT burst in Theorem 5. First, we can bound the TT burst as
defined in Theorem 3.

Theorem 3 (Worst-case burst for TT tasks). The function
αUTT ,CTT : R+ → R+, 0 7→ 0 and t 7→ UTT · t + CTT

if t > 0, is an arrival curve for the set of TT tasks T TT

Proof. The functions αUi,Ci
are arrival curves for the TT tasks

τi. So an arrival curve for the set of TT tasks τ is ατ =∑
τi
αUi,Ci = αUTT ,CTT according to Proposition 1.

This is a (pessimistic) burst that will be refined further.

Theorem 4 (Response time of ET tasks). Let αUTT ,bTT

be a linear arrival curve of the aggregated scheduled TT
tasks, and αET

>p(i) an arrival curve of the aggregated ET
tasks with a priority strictly greater than p(i). The maxi-
mum response time of an ET task τi of priority p(i) is:

hDev
(
αET
p(i),

[
(λ− UTT) · t− αET

>p(i) − bTT
]+
↑

)
Proof. This is a direct application of Theorems 1 and 2 with
αUTT ,bTT (t) = UTT · t+ bTT .

We now define the maximum admissible TT burst such that
ET tasks fulfill their deadlines in Theorem 5.

Theorem 5 (Maximal admissible TT burst). Let αUTT ,bTT be
a linear arrival curve of the aggregated scheduled TT tasks,
αET
p(i) an arrival curve of the aggregated ET tasks of priority

p(i), and αET
>p(i) an arrival curve of the aggregated ET tasks

of priority strictly higher than p(i).
The maximum value of bTT fulfilling the deadlines of all

ET tasks, denoted bTT
max, is, if it exists, the maximum value of

bTT such that, 0 < bTT ≤ CTT and, ∀ ET priority p(i):

min
∀τj

p(j)=p(i)

(Dj) ≥ hDev
(
αET
p(i),

[
(λ− UTT) · t− αET

>p(i) − bTT
]+
↑

)

Proof. We know from Theorem 3 that bTT ≤ CTT . Addition-
ally, ∀ ET priority p(i), the maximum response time computed
in Theorem 4 for priority p(i), must be smaller than or equal
to the deadlines of the tasks of priority p(i).

While it is possible to use the linear approximation of the
ET arrival curves to directly calculate bTT

max, the value found
with such an approximation is much too pessimistic. In this

"TTTech - Internal"

0 1 2 3 4 5 6 7 0 1 2 3 4

1 1
2

TT TT TT TT TT

0 1 2 3 4 5 6 7

1

TT TT TT

<latexit sha1_base64="BW73Wp4x4Q4gw7GtpweSQhDUNZY=">AAAB7XicbVBNTwIxEJ3FL8Qv1KOXRmLiiewaoh6JXjxiwgIJrKRbulDptpu2a0I2/AcvHjTGq//Hm//GAntQ8CWTvLw3k5l5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8tUEeoTyaXqhFhTzgT1DTOcdhJFcRxy2g7HtzO//USVZlI0zSShQYyHgkWMYGOllv+QNZvTfrniVt050CrxclKBHI1++as3kCSNqTCEY627npuYIMPKMMLptNRLNU0wGeMh7VoqcEx1kM2vnaIzqwxQJJUtYdBc/T2R4VjrSRzazhibkV72ZuJ/Xjc10XWQMZGkhgqyWBSlHBmJZq+jAVOUGD6xBBPF7K2IjLDCxNiASjYEb/nlVdK6qHqX1dp9rVK/yeMowgmcwjl4cAV1uIMG+EDgEZ7hFd4c6bw4787HorXg5DPH8AfO5w93ZY8S</latexit>

UTT

<latexit sha1_base64="ZxWgTv+K/w6UXE2fFLvvuCB9A9g=">AAAB73icbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFN7qrYB/QjiWTybShmWRMMkIZ+hNuXCji1t9x59+YtrPQ1gOBwzn33tx7goQzbVz32ymsrK6tbxQ3S1vbO7t75f2DlpapIrRJJJeqE2BNORO0aZjhtJMoiuOA03Ywup767SeqNJPi3owT6sd4IFjECDZW6tw+ZCzkdNIvV9yqOwNaJl5OKpCj0S9/9UJJ0pgKQzjWuuu5ifEzrAwjdl6pl2qaYDLCA9q1VOCYaj+b7TtBJ1YJUSSVfcKgmfq7I8Ox1uM4sJUxNkO96E3F/7xuaqJLP2MiSQ0VZP5RlHJkJJoej0KmKDF8bAkmitldERlihYmxEZVsCN7iycukdVb1zqu1u1qlfpXHUYQjOIZT8OAC6nADDWgCAQ7P8ApvzqPz4rw7H/PSgpP3HMIfOJ8/KSKQEA==</latexit>

Iidle

<latexit sha1_base64="b0VG5nRgH4lDhivryomAsYP8dLs=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mVUj0WveitQr+gXUs2zbax2WRJskJZ+h+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dnJr6xubW/ntws7u3v5B8fCopWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2Mb2Z++4kqzaRomElM/QgPBQsZwcZKrbuHtNGY9oslt+zOgVaJl5ESZKj3i1+9gSRJRIUhHGvd9dzY+ClWhhFOp4VeommMyRgPaddSgSOq/XR+7RSdWWWAQqlsCYPm6u+JFEdaT6LAdkbYjPSyNxP/87qJCa/8lIk4MVSQxaIw4chINHsdDZiixPCJJZgoZm9FZIQVJsYGVLAheMsvr5LWRdmrliv3lVLtOosjDydwCufgwSXU4Bbq0AQCj/AMr/DmSOfFeXc+Fq05J5s5hj9wPn8AZPmPBg==</latexit>

ITT
2
=

<latexit sha1_base64="ZY5LPM+U8aNO2BNXPu/tm+SMKag=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9BLx4UIpoHJEuYnUySIbOzy0yvEJZ8ghcPinj1i7z5N06SPWhiQUNR1U13VxBLYdB1v53cyura+kZ+s7C1vbO7V9w/aJgo0YzXWSQj3Qqo4VIoXkeBkrdizWkYSN4MRtdTv/nEtRGResRxzP2QDpToC0bRSg+33btuseSW3RnIMvEyUoIMtW7xq9OLWBJyhUxSY9qeG6OfUo2CST4pdBLDY8pGdMDblioacuOns1Mn5MQqPdKPtC2FZKb+nkhpaMw4DGxnSHFoFr2p+J/XTrB/6adCxQlyxeaL+okkGJHp36QnNGcox5ZQpoW9lbAh1ZShTadgQ/AWX14mjbOyd16u3FdK1assjjwcwTGcggcXUIUbqEEdGAzgGV7hzZHOi/PufMxbc042cwh/4Hz+APX3jZk=</latexit>

LM

2
= TT

a) b) c)

TT TT

<latexit sha1_base64="PGJTcwJlQUhIMAcbQlcxJxbxduA=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRbBU9mVoh6LXjxW6Be0a8mm2TY0yS5JVizL/g0vHhTx6p/x5r8xbfegrQ8GHu/NMDMviDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNMbmd+55EqzSLZNNOY+gKPJAsZwcZK/WCQCvyUPaTNZjYoV9yqOwdaJV5OKpCjMSh/9YcRSQSVhnCsdc9zY+OnWBlGOM1K/UTTGJMJHtGepRILqv10fnOGzqwyRGGkbEmD5urviRQLracisJ0Cm7Fe9mbif14vMeG1nzIZJ4ZKslgUJhyZCM0CQEOmKDF8agkmitlbERljhYmxMZVsCN7yy6ukfVH1Lqu1+1qlfpPHUYQTOIVz8OAK6nAHDWgBgRie4RXenMR5cd6dj0VrwclnjuEPnM8fdPCR+A==</latexit>

bTT
max

Fig. 3: Checking a TT schedule under the TB and BLC
constraints

paper, we use staircase ET arrival curves in Theorem 5.
Hence, as we have a minimum and a maximum bound for
bTT , we use a binary search to find bTT

max, but other search
methods are also possible.

B. Burst Limiting Constraint (BLC)

Traditionally, a token bucket (TB) (or a leaky bucket)
shaper would be used to check the computed TT envelope. As
illustrated in Fig. 3 (a), the budget for a slot (i.e., 1) is paid
at the slot allocation time t (an allocated TT slot is a green
rectangle) under a TB, while the budget continuously increases
with a rate Iidle. Therefore, the budget is a non-continuous
function (represented by the red line) while we are trying to
check a continuous function αTT (t) = UTT · t + bTT

max. In
Fig. 3 (b), in interval [1, 4], with a maximum burst bTT

max = 2
and a replenishment rate of UTT = 1/3, the maximum
allowed cumulative processing done for TT is 3. Hence, the
third TT slot at t = 3 (i.e., the orange rectangle) does conform
to αTT (t), but the TB is too pessimistic due to paying the
full budget at the start of the slot. Due to this, the TB is only
optimal for infinitesimally small demand granularity [46].

To improve this, we introduce a so-called Burst Limiting
Constraint (BLC), inspired by the Burst Limiting Shaper
(BLS) and the Credit Based Shaper (CBS) [47]. Instead of
paying the budget at the start of the slot, we check that the
budget at the end of the slot conforms to the maximum arrival
curve, and we pay the budget continuously during the slot at a
rate ITT = λ−UTT (λ = 1 for single-core unit-speed CPU).
Hence, at the end of a TT slot, the budget variation is the same
as with a TB but without the discontinuity of the budget. We
detail the BLC in Definition 3, and we show in Theorem 6
that the proposed BLC offers a maximum service curve that
can be parameterized to fit αTT (t).

Definition 3 (Burst Limiting Constraint). A slot reserved for
TT in a TT schedule σ is invalid under the Burst Limiting
Constraint (BLC) if the budget is strictly smaller than 0 at the
end of the slot, with the budget defined as follows:
• the budget bdgσ(t) is a continuous piecewise linear func-

tion of the time t ∈ R+ 7→ R,
• when a slot is reserved for TT in σ, the budget decreases

at a rate bdg′σ(t) = −ITT < 0,
• when a slot is idle in σ (i.e., not assigned to TT), the

budget increases at a rate bdg′σ(t) = Iidle > 0 while the
budget is strictly smaller than a maximum value LM , or
else it remains constant at LM , i.e., bdg′σ(t) = 0,

• the sum of ITT and Iidle is the processing capacity λ,
• at time 0, the budget is LM , i.e. bdgσ(0) = LM .

The unit of the budget is the computation unit, the unit of
ITT and Iidle is computation units per time unit. The BLC
budget variations are illustrated in Fig. 3 (c). We can see that
in the interval [1, 4], we are able to assign 3 slots, which is
the max amount allowed by αTT (t) = 1/3 · t + 2 for an
interval of length 3. In this respect, the BLC does better than
the TB in Fig. 3 (b). However, in the interval [0, 6], with the
first slot being idle, there can be only 3 TT slots, instead of
the expected 4 (i.e., 6 · 1/3 + 2), due to the saturation of the
budget in the interval [0, 1]. So, while the BLC itself is not
optimal either, its performance is better than the TB, and this
difference can significantly impact schedulability. As visible
in Fig. 4 (b) vs. 4 (c), for a maximum burst b = 2 under TB,
the schedule is invalid, but when transforming the TB to a
BLC with the same burst (LM), the schedule becomes valid.

While the BLC resembles CBS and BLS by its use of a
budget/credit, Definition 3 shows that it is quite different.
Contrary to the CBS credit [48], the BLC budget is continuous,
and we set the budget upper and lower bounds. Moreover,
unlike BLS, with BLC, there is no priority inversion at a
defined level LR, and no saturation of the budget at 0, as
is the case for the BLS [49]. We now present a maximum
service curve offered to TT tasks by the BLC.

Theorem 6 (BLC maximum service curve). A maximum
service curve of a set of scheduled TT tasks validated by the
Burst Limiting Constraint (BLC) defined in Definition 3 is:
γTT
blc (t) = Iidle · t+ LM .

Proof. The proof is based on the proofs detailed in [49], [50]
for the Burst Limiting Shaper (BLS) [51], [47] in TSN net-
works. We denote CTT (t) the computation capacity function
offered to TT tasks, and ∆CTT (t, δ) = CTT (t+ δ)− CTT (t)
its variation during an interval δ ≥ 0, and λ = 1 the
processing capacity (in computation units per time unit).
Hence, ∆CTT (t,δ)

λ represents the executing time of the tasks
TT during any interval δ. According to Definition 2, we search
γTT
blc (δ) such that

∆CTT (t, δ) ≤ γTT
blc (δ),∀t ≥ 0.

We consider a known TT schedule σ. If σ fulfills the BLC,
we know that bdgσ(t) ≥ 0,∀t ≥ 0 and that the budget cannot
saturate at 0: if the budget is 0, the next slot will be idle
to fulfill the BLC; hence the budget will increase. Therefore,
there are 3 possible variations of the budget: 1) the budget
increases for idle slots if it is strictly smaller than LM ; 2) the
budget decreases for TT slots in σ; 3) the budget saturates
at LM when a slot is idle, and the budget is already at LM .
Hence, we denote ∆CLM ,sat(t, δ) the computation capacity of
the time units where the budget is saturated at LM .

We present here a lemma regarding the budget saturation
that is required for the proof of the maximum service curve.
Similar to [50], we show in Lemma 1 how to bound the sum
of the consumed and gained budget depending on the budget
saturation.

Lemma 1 (Continuous budget bounds). ∀ set of assigned TT
tasks fulfilling a BLC, ∀t ≥ 0, δ ≥ 0, the variation of the

computation capacity ∆CTT (t, δ) is bounded by:

−LM ≤ −∆CTT (t, δ) + (δ − ∆CLM ,sat(t, δ)

λ
) · Iidle ≤ LM

Proof. In an interval t, t + δ, for any set of assigned TT
tasks fulfilling the BLC, the accurate consumed budget is the
duration corresponding to the slots ∆CTT (t,δ)

λ multiplied by
the signed TT slope:

budgetconsumed =
∆CTT (t, δ)

λ
· (−ITT).

Conversely, similarly to [50], the gained budget is the
remaining time δ − ∆CTT (t,δ)

λ minus the saturation time
∆CLM,sat(t,δ)

λ , multiplied by the idle slope:

budgetgained =

(
δ − ∆CTT (t, δ) + ∆CLM ,sat(t, δ)

λ

)
· Iidle.

Thus ∀δ ∈ R+, using the fact that ITT + Iidle = λ,
the sum of the gained and consumed budget, expressed as
budgetconsumed + budgetgained, is:

−∆CTT (t, δ) +
(
δ − ∆CLM ,sat(t, δ)

λ

)
· Iidle.

Since the budget is a continuous function with lower and upper
bounds 0 and LM , respectively, the sum of the consumed and
gained budget is always bounded by −LM and +LM :

−LM ≤ −∆CTT (t, δ)+
(
δ− ∆CLM ,sat(t, δ)

λ

)
· Iidle ≤ LM

Returning to the proof of Theorem 6, we know from
Lemma 1 that

−LM ≤ −∆CTT (t, δ) + (δ − ∆CLM ,sat(t, δ)

λ
) · Iidle.

Thus,

∆CTT (t, δ) ≤ LM +
(
δ − ∆CLM ,sat(t, δ)

λ

)
· Iidle.

We know by definition that: ∆CLM ,sat(t, δ) ≥ 0, thus
∆CTT (t, δ) ≤ Iidle · δ + LM = γTT

blc (δ).

While checking that an existing TT schedule adheres to
the BLC (or TB) is easy (c.f. Fig. 3), we need to create
TT schedules that respect the BLC constraint. For each time
instant, the BLC essentially expresses how many consecutive
TT slots (under the current BLC budget) can be in a TT
schedule before an idle slot reserved for ET tasks has to
be inserted into the timeline to ensure the schedulability of
ET tasks. Hence, this BLC constraint can be integrated as an
additional constraint into any existing TT schedule synthesis
method (e.g. [25], [9], [26]) that also considers complex
dependencies (e.g., multi-rate ADAS chains [12], [27], [11])
and network communication requirements (e.g. via TSN [9],
[52]). We note that tracking the BLC budget consumption
and replenishment is only done at design-time when creating
the TT schedule so there is no runtime overhead. In the next
section, we provide our own algorithm called Burst Limiting
Least Laxity First (B3LF) for generating TT schedules while
respecting the BLC. We believe B3LF is highly suited for the
given problem, but note that our approach is not limited to it
and can be applied to any TT schedule generation method.

TTTech - Internal

1
2

1
2

1
2

a)

b)

c)

Releases/ deadlines <latexit sha1_base64="5RGSNXU8cU1IHGbXoQiMqTRbz+k=">AAAB8nicbVBdSwJBFL1rX2ZfVo+9DElgILITYj1KvfRooCmsi8yOszo4O7vMzAYi/oxeeiii135Nb/2bRt2H0g5cOJxzL/feEySCa+O6305uY3Nreye/W9jbPzg8Kh6fPOo4VZS1aSxi1Q2IZoJL1jbcCNZNFCNRIFgnGN/N/c4TU5rHsmUmCfMjMpQ85JQYK3mtVh+XcaVewZf9YsmtugugdYIzUoIMzX7xqzeIaRoxaaggWnvYTYw/JcpwKtis0Es1SwgdkyHzLJUkYtqfLk6eoQurDFAYK1vSoIX6e2JKIq0nUWA7I2JGetWbi/95XmrCG3/KZZIaJulyUZgKZGI0/x8NuGLUiIklhCpub0V0RBShxqZUsCHg1ZfXyeNVFdertYdaqXGbxZGHMziHMmC4hgbcQxPaQCGGZ3iFN8c4L86787FszTnZzCn8gfP5A3KDj2o=</latexit>

TT1(1, 6, 1)

<latexit sha1_base64="BFpd/qSfz09ozb3Hyz8W/zTy+dE=">AAAB83icbVBNS8NAEJ3Ur1o/WvXoZbEIFUpJQlGPRS8eK/QL2lA22027dLMJuxuhhP4NLx4U8eqf8ea/cdvmoK0PBh7vzTAzz485U9q2v63c1vbO7l5+v3BweHRcLJ2cdlSUSELbJOKR7PlYUc4EbWumOe3FkuLQ57TrT+8XfveJSsUi0dKzmHohHgsWMIK1kQat1tCtOFXHrbpXw1LZrtlLoE3iZKQMGZrD0tdgFJEkpEITjpXqO3asvRRLzQin88IgUTTGZIrHtG+owCFVXrq8eY4ujTJCQSRNCY2W6u+JFIdKzULfdIZYT9S6txD/8/qJDm69lIk40VSQ1aIg4UhHaBEAGjFJieYzQzCRzNyKyARLTLSJqWBCcNZf3iQdt+Zc1+qP9XLjLosjD+dwARVw4AYa8ABNaAOBGJ7hFd6sxHqx3q2PVWvOymbO4A+szx/hNY+j</latexit>

TT2(1, 12, 2)

<latexit sha1_base64="52BqEpkJ3EOsg+B0H01q6gVuNnA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BItQoZSkFu2x6MVjhdYW0lA22027dLMbdidCCf0ZXjwo4tVf481/47bNQVsfDDzem2FmXhBzpsFxvq3cxubW9k5+t7C3f3B4VDw+edQyUYR2iORS9QKsKWeCdoABp71YURwFnHaDyd3c7z5RpZkUbZjG1I/wSLCQEQxG8trtwVW5VmlU6peDYsmpOgvY68TNSAllaA2KX/2hJElEBRCOtfZcJwY/xQoY4XRW6CeaxphM8Ih6hgocUe2ni5Nn9oVRhnYolSkB9kL9PZHiSOtpFJjOCMNYr3pz8T/PSyBs+CkTcQJUkOWiMOE2SHv+vz1kihLgU0MwUczcapMxVpiASalgQnBXX14nj7Wqe12tP9RLzdssjjw6Q+eojFx0g5roHrVQBxEk0TN6RW8WWC/Wu/WxbM1Z2cwp+gPr8wd+v49y</latexit>

TT3(2, 8, 4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

<latexit sha1_base64="Eu9aKfw48M//PI0scALh4r/9rfA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPRi8cK/YI2lM120i7dbMLuRCyhP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLEikMuu63U1hb39jcKm6Xdnb39g/Kh0ctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+BG1ErBo4ScCP2FCJUHCGVur2EJ4wazSmfa9frrhVdw66SrycVEiOer/81RvEPI1AIZfMmK7nJuhnTKPgEqalXmogYXzMhtC1VLEIjJ/NT57SM6sMaBhrWwrpXP09kbHImEkU2M6I4cgsezPxP6+bYnjjZ0IlKYLii0VhKinGdPY/HQgNHOXEEsa1sLdSPmKacbQplWwI3vLLq6R1UfWuqpcPl5XabR5HkZyQU3JOPHJNauSe1EmTcBKTZ/JK3hx0Xpx352PRWnDymWPyB87nD0alkUI=</latexit>

TT1
<latexit sha1_base64="R/HAbaVuBRI78Osm1fmtAiEHusw=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqeyWoh6LXjxW6Bdsl5JNs21oNlmSWbEs/RlePCji1V/jzX9j2u5BWx8MPN6bYWZemAhuwHW/ncLG5tb2TnG3tLd/cHhUPj7pGJVqytpUCaV7ITFMcMnawEGwXqIZiUPBuuHkbu53H5k2XMkWTBMWxGQkecQpASv5fWBPkLVas0FtUK64VXcBvE68nFRQjuag/NUfKprGTAIVxBjfcxMIMqKBU8FmpX5qWELohIyYb6kkMTNBtjh5hi+sMsSR0rYk4IX6eyIjsTHTOLSdMYGxWfXm4n+en0J0E2RcJikwSZeLolRgUHj+Px5yzSiIqSWEam5vxXRMNKFgUyrZELzVl9dJp1b1rqr1h3qlcZvHUURn6BxdIg9dowa6R03URhQp9Ixe0ZsDzovz7nwsWwtOPnOK/sD5/AFIKZFD</latexit>

TT2
<latexit sha1_base64="/7gyrS2SICKBEsfqCvLMHnV3oew=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqexqUY9FLx4r9Au2S8mm2TY0myzJrFiW/gwvHhTx6q/x5r8xbfegrQ8GHu/NMDMvTAQ34LrfTmFtfWNzq7hd2tnd2z8oHx61jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXB8N/M7j0wbrmQTJgkLYjKUPOKUgJX8HrAnyJrNaf+yX664VXcOvEq8nFRQjka//NUbKJrGTAIVxBjfcxMIMqKBU8GmpV5qWELomAyZb6kkMTNBNj95is+sMsCR0rYk4Ln6eyIjsTGTOLSdMYGRWfZm4n+en0J0E2RcJikwSReLolRgUHj2Px5wzSiIiSWEam5vxXRENKFgUyrZELzll1dJ+6LqXVVrD7VK/TaPo4hO0Ck6Rx66RnV0jxqohShS6Bm9ojcHnBfn3flYtBacfOYY/YHz+QNJrZFE</latexit>

TT3
<latexit sha1_base64="/7gyrS2SICKBEsfqCvLMHnV3oew=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqexqUY9FLx4r9Au2S8mm2TY0myzJrFiW/gwvHhTx6q/x5r8xbfegrQ8GHu/NMDMvTAQ34LrfTmFtfWNzq7hd2tnd2z8oHx61jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXB8N/M7j0wbrmQTJgkLYjKUPOKUgJX8HrAnyJrNaf+yX664VXcOvEq8nFRQjka//NUbKJrGTAIVxBjfcxMIMqKBU8GmpV5qWELomAyZb6kkMTNBNj95is+sMsCR0rYk4Ln6eyIjsTGTOLSdMYGRWfZm4n+en0J0E2RcJikwSReLolRgUHj2Px5wzSiIiSWEam5vxXRENKFgUyrZELzll1dJ+6LqXVVrD7VK/TaPo4hO0Ck6Rx66RnV0jxqohShS6Bm9ojcHnBfn3flYtBacfOYY/YHz+QNJrZFE</latexit>

TT3
<latexit sha1_base64="Eu9aKfw48M//PI0scALh4r/9rfA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPRi8cK/YI2lM120i7dbMLuRCyhP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLEikMuu63U1hb39jcKm6Xdnb39g/Kh0ctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+BG1ErBo4ScCP2FCJUHCGVur2EJ4wazSmfa9frrhVdw66SrycVEiOer/81RvEPI1AIZfMmK7nJuhnTKPgEqalXmogYXzMhtC1VLEIjJ/NT57SM6sMaBhrWwrpXP09kbHImEkU2M6I4cgsezPxP6+bYnjjZ0IlKYLii0VhKinGdPY/HQgNHOXEEsa1sLdSPmKacbQplWwI3vLLq6R1UfWuqpcPl5XabR5HkZyQU3JOPHJNauSe1EmTcBKTZ/JK3hx0Xpx352PRWnDymWPyB87nD0alkUI=</latexit>

TT1
<latexit sha1_base64="R/HAbaVuBRI78Osm1fmtAiEHusw=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqeyWoh6LXjxW6Bdsl5JNs21oNlmSWbEs/RlePCji1V/jzX9j2u5BWx8MPN6bYWZemAhuwHW/ncLG5tb2TnG3tLd/cHhUPj7pGJVqytpUCaV7ITFMcMnawEGwXqIZiUPBuuHkbu53H5k2XMkWTBMWxGQkecQpASv5fWBPkLVas0FtUK64VXcBvE68nFRQjuag/NUfKprGTAIVxBjfcxMIMqKBU8FmpX5qWELohIyYb6kkMTNBtjh5hi+sMsSR0rYk4IX6eyIjsTHTOLSdMYGxWfXm4n+en0J0E2RcJikwSZeLolRgUHj+Px5yzSiIqSWEam5vxXRMNKFgUyrZELzVl9dJp1b1rqr1h3qlcZvHUURn6BxdIg9dowa6R03URhQp9Ixe0ZsDzovz7nwsWwtOPnOK/sD5/AFIKZFD</latexit>

TT2
<latexit sha1_base64="Eu9aKfw48M//PI0scALh4r/9rfA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPRi8cK/YI2lM120i7dbMLuRCyhP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLEikMuu63U1hb39jcKm6Xdnb39g/Kh0ctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+BG1ErBo4ScCP2FCJUHCGVur2EJ4wazSmfa9frrhVdw66SrycVEiOer/81RvEPI1AIZfMmK7nJuhnTKPgEqalXmogYXzMhtC1VLEIjJ/NT57SM6sMaBhrWwrpXP09kbHImEkU2M6I4cgsezPxP6+bYnjjZ0IlKYLii0VhKinGdPY/HQgNHOXEEsa1sLdSPmKacbQplWwI3vLLq6R1UfWuqpcPl5XabR5HkZyQU3JOPHJNauSe1EmTcBKTZ/JK3hx0Xpx352PRWnDymWPyB87nD0alkUI=</latexit>

TT1
<latexit sha1_base64="/7gyrS2SICKBEsfqCvLMHnV3oew=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqexqUY9FLx4r9Au2S8mm2TY0myzJrFiW/gwvHhTx6q/x5r8xbfegrQ8GHu/NMDMvTAQ34LrfTmFtfWNzq7hd2tnd2z8oHx61jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXB8N/M7j0wbrmQTJgkLYjKUPOKUgJX8HrAnyJrNaf+yX664VXcOvEq8nFRQjka//NUbKJrGTAIVxBjfcxMIMqKBU8GmpV5qWELomAyZb6kkMTNBNj95is+sMsCR0rYk4Ln6eyIjsTGTOLSdMYGRWfZm4n+en0J0E2RcJikwSReLolRgUHj2Px5wzSiIiSWEam5vxXRENKFgUyrZELzll1dJ+6LqXVVrD7VK/TaPo4hO0Ck6Rx66RnV0jxqohShS6Bm9ojcHnBfn3flYtBacfOYY/YHz+QNJrZFE</latexit>

TT3
<latexit sha1_base64="/7gyrS2SICKBEsfqCvLMHnV3oew=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqexqUY9FLx4r9Au2S8mm2TY0myzJrFiW/gwvHhTx6q/x5r8xbfegrQ8GHu/NMDMvTAQ34LrfTmFtfWNzq7hd2tnd2z8oHx61jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXB8N/M7j0wbrmQTJgkLYjKUPOKUgJX8HrAnyJrNaf+yX664VXcOvEq8nFRQjka//NUbKJrGTAIVxBjfcxMIMqKBU8GmpV5qWELomAyZb6kkMTNBNj95is+sMsCR0rYk4Ln6eyIjsTGTOLSdMYGRWfZm4n+en0J0E2RcJikwSReLolRgUHj2Px5wzSiIiSWEam5vxXRENKFgUyrZELzll1dJ+6LqXVVrD7VK/TaPo4hO0Ck6Rx66RnV0jxqohShS6Bm9ojcHnBfn3flYtBacfOYY/YHz+QNJrZFE</latexit>

TT3
<latexit sha1_base64="/7gyrS2SICKBEsfqCvLMHnV3oew=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqexqUY9FLx4r9Au2S8mm2TY0myzJrFiW/gwvHhTx6q/x5r8xbfegrQ8GHu/NMDMvTAQ34LrfTmFtfWNzq7hd2tnd2z8oHx61jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXB8N/M7j0wbrmQTJgkLYjKUPOKUgJX8HrAnyJrNaf+yX664VXcOvEq8nFRQjka//NUbKJrGTAIVxBjfcxMIMqKBU8GmpV5qWELomAyZb6kkMTNBNj95is+sMsCR0rYk4Ln6eyIjsTGTOLSdMYGRWfZm4n+en0J0E2RcJikwSReLolRgUHj2Px5wzSiIiSWEam5vxXRENKFgUyrZELzll1dJ+6LqXVVrD7VK/TaPo4hO0Ck6Rx66RnV0jxqohShS6Bm9ojcHnBfn3flYtBacfOYY/YHz+QNJrZFE</latexit>

TT3
<latexit sha1_base64="/7gyrS2SICKBEsfqCvLMHnV3oew=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqexqUY9FLx4r9Au2S8mm2TY0myzJrFiW/gwvHhTx6q/x5r8xbfegrQ8GHu/NMDMvTAQ34LrfTmFtfWNzq7hd2tnd2z8oHx61jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXB8N/M7j0wbrmQTJgkLYjKUPOKUgJX8HrAnyJrNaf+yX664VXcOvEq8nFRQjka//NUbKJrGTAIVxBjfcxMIMqKBU8GmpV5qWELomAyZb6kkMTNBNj95is+sMsCR0rYk4Ln6eyIjsTGTOLSdMYGRWfZm4n+en0J0E2RcJikwSReLolRgUHj2Px5wzSiIiSWEam5vxXRENKFgUyrZELzll1dJ+6LqXVVrD7VK/TaPo4hO0Ck6Rx66RnV0jxqohShS6Bm9ojcHnBfn3flYtBacfOYY/YHz+QNJrZFE</latexit>

TT3
<latexit sha1_base64="Eu9aKfw48M//PI0scALh4r/9rfA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPRi8cK/YI2lM120i7dbMLuRCyhP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLEikMuu63U1hb39jcKm6Xdnb39g/Kh0ctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+BG1ErBo4ScCP2FCJUHCGVur2EJ4wazSmfa9frrhVdw66SrycVEiOer/81RvEPI1AIZfMmK7nJuhnTKPgEqalXmogYXzMhtC1VLEIjJ/NT57SM6sMaBhrWwrpXP09kbHImEkU2M6I4cgsezPxP6+bYnjjZ0IlKYLii0VhKinGdPY/HQgNHOXEEsa1sLdSPmKacbQplWwI3vLLq6R1UfWuqpcPl5XabR5HkZyQU3JOPHJNauSe1EmTcBKTZ/JK3hx0Xpx352PRWnDymWPyB87nD0alkUI=</latexit>

TT1

<latexit sha1_base64="Eu9aKfw48M//PI0scALh4r/9rfA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPRi8cK/YI2lM120i7dbMLuRCyhP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLEikMuu63U1hb39jcKm6Xdnb39g/Kh0ctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+BG1ErBo4ScCP2FCJUHCGVur2EJ4wazSmfa9frrhVdw66SrycVEiOer/81RvEPI1AIZfMmK7nJuhnTKPgEqalXmogYXzMhtC1VLEIjJ/NT57SM6sMaBhrWwrpXP09kbHImEkU2M6I4cgsezPxP6+bYnjjZ0IlKYLii0VhKinGdPY/HQgNHOXEEsa1sLdSPmKacbQplWwI3vLLq6R1UfWuqpcPl5XabR5HkZyQU3JOPHJNauSe1EmTcBKTZ/JK3hx0Xpx352PRWnDymWPyB87nD0alkUI=</latexit>

TT1
<latexit sha1_base64="R/HAbaVuBRI78Osm1fmtAiEHusw=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqeyWoh6LXjxW6Bdsl5JNs21oNlmSWbEs/RlePCji1V/jzX9j2u5BWx8MPN6bYWZemAhuwHW/ncLG5tb2TnG3tLd/cHhUPj7pGJVqytpUCaV7ITFMcMnawEGwXqIZiUPBuuHkbu53H5k2XMkWTBMWxGQkecQpASv5fWBPkLVas0FtUK64VXcBvE68nFRQjuag/NUfKprGTAIVxBjfcxMIMqKBU8FmpX5qWELohIyYb6kkMTNBtjh5hi+sMsSR0rYk4IX6eyIjsTHTOLSdMYGxWfXm4n+en0J0E2RcJikwSZeLolRgUHj+Px5yzSiIqSWEam5vxXRMNKFgUyrZELzVl9dJp1b1rqr1h3qlcZvHUURn6BxdIg9dowa6R03URhQp9Ixe0ZsDzovz7nwsWwtOPnOK/sD5/AFIKZFD</latexit>

TT2
<latexit sha1_base64="/7gyrS2SICKBEsfqCvLMHnV3oew=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqexqUY9FLx4r9Au2S8mm2TY0myzJrFiW/gwvHhTx6q/x5r8xbfegrQ8GHu/NMDMvTAQ34LrfTmFtfWNzq7hd2tnd2z8oHx61jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXB8N/M7j0wbrmQTJgkLYjKUPOKUgJX8HrAnyJrNaf+yX664VXcOvEq8nFRQjka//NUbKJrGTAIVxBjfcxMIMqKBU8GmpV5qWELomAyZb6kkMTNBNj95is+sMsCR0rYk4Ln6eyIjsTGTOLSdMYGRWfZm4n+en0J0E2RcJikwSReLolRgUHj2Px5wzSiIiSWEam5vxXRENKFgUyrZELzll1dJ+6LqXVVrD7VK/TaPo4hO0Ck6Rx66RnV0jxqohShS6Bm9ojcHnBfn3flYtBacfOYY/YHz+QNJrZFE</latexit>

TT3
<latexit sha1_base64="/7gyrS2SICKBEsfqCvLMHnV3oew=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqexqUY9FLx4r9Au2S8mm2TY0myzJrFiW/gwvHhTx6q/x5r8xbfegrQ8GHu/NMDMvTAQ34LrfTmFtfWNzq7hd2tnd2z8oHx61jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXB8N/M7j0wbrmQTJgkLYjKUPOKUgJX8HrAnyJrNaf+yX664VXcOvEq8nFRQjka//NUbKJrGTAIVxBjfcxMIMqKBU8GmpV5qWELomAyZb6kkMTNBNj95is+sMsCR0rYk4Ln6eyIjsTGTOLSdMYGRWfZm4n+en0J0E2RcJikwSReLolRgUHj2Px5wzSiIiSWEam5vxXRENKFgUyrZELzll1dJ+6LqXVVrD7VK/TaPo4hO0Ck6Rx66RnV0jxqohShS6Bm9ojcHnBfn3flYtBacfOYY/YHz+QNJrZFE</latexit>

TT3
<latexit sha1_base64="Eu9aKfw48M//PI0scALh4r/9rfA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPRi8cK/YI2lM120i7dbMLuRCyhP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLEikMuu63U1hb39jcKm6Xdnb39g/Kh0ctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+BG1ErBo4ScCP2FCJUHCGVur2EJ4wazSmfa9frrhVdw66SrycVEiOer/81RvEPI1AIZfMmK7nJuhnTKPgEqalXmogYXzMhtC1VLEIjJ/NT57SM6sMaBhrWwrpXP09kbHImEkU2M6I4cgsezPxP6+bYnjjZ0IlKYLii0VhKinGdPY/HQgNHOXEEsa1sLdSPmKacbQplWwI3vLLq6R1UfWuqpcPl5XabR5HkZyQU3JOPHJNauSe1EmTcBKTZ/JK3hx0Xpx352PRWnDymWPyB87nD0alkUI=</latexit>

TT1
<latexit sha1_base64="R/HAbaVuBRI78Osm1fmtAiEHusw=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqeyWoh6LXjxW6Bdsl5JNs21oNlmSWbEs/RlePCji1V/jzX9j2u5BWx8MPN6bYWZemAhuwHW/ncLG5tb2TnG3tLd/cHhUPj7pGJVqytpUCaV7ITFMcMnawEGwXqIZiUPBuuHkbu53H5k2XMkWTBMWxGQkecQpASv5fWBPkLVas0FtUK64VXcBvE68nFRQjuag/NUfKprGTAIVxBjfcxMIMqKBU8FmpX5qWELohIyYb6kkMTNBtjh5hi+sMsSR0rYk4IX6eyIjsTHTOLSdMYGxWfXm4n+en0J0E2RcJikwSZeLolRgUHj+Px5yzSiIqSWEam5vxXRMNKFgUyrZELzVl9dJp1b1rqr1h3qlcZvHUURn6BxdIg9dowa6R03URhQp9Ixe0ZsDzovz7nwsWwtOPnOK/sD5/AFIKZFD</latexit>

TT2
<latexit sha1_base64="Eu9aKfw48M//PI0scALh4r/9rfA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPRi8cK/YI2lM120i7dbMLuRCyhP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLEikMuu63U1hb39jcKm6Xdnb39g/Kh0ctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+BG1ErBo4ScCP2FCJUHCGVur2EJ4wazSmfa9frrhVdw66SrycVEiOer/81RvEPI1AIZfMmK7nJuhnTKPgEqalXmogYXzMhtC1VLEIjJ/NT57SM6sMaBhrWwrpXP09kbHImEkU2M6I4cgsezPxP6+bYnjjZ0IlKYLii0VhKinGdPY/HQgNHOXEEsa1sLdSPmKacbQplWwI3vLLq6R1UfWuqpcPl5XabR5HkZyQU3JOPHJNauSe1EmTcBKTZ/JK3hx0Xpx352PRWnDymWPyB87nD0alkUI=</latexit>

TT1
<latexit sha1_base64="/7gyrS2SICKBEsfqCvLMHnV3oew=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqexqUY9FLx4r9Au2S8mm2TY0myzJrFiW/gwvHhTx6q/x5r8xbfegrQ8GHu/NMDMvTAQ34LrfTmFtfWNzq7hd2tnd2z8oHx61jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXB8N/M7j0wbrmQTJgkLYjKUPOKUgJX8HrAnyJrNaf+yX664VXcOvEq8nFRQjka//NUbKJrGTAIVxBjfcxMIMqKBU8GmpV5qWELomAyZb6kkMTNBNj95is+sMsCR0rYk4Ln6eyIjsTGTOLSdMYGRWfZm4n+en0J0E2RcJikwSReLolRgUHj2Px5wzSiIiSWEam5vxXRENKFgUyrZELzll1dJ+6LqXVVrD7VK/TaPo4hO0Ck6Rx66RnV0jxqohShS6Bm9ojcHnBfn3flYtBacfOYY/YHz+QNJrZFE</latexit>

TT3
<latexit sha1_base64="/7gyrS2SICKBEsfqCvLMHnV3oew=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqexqUY9FLx4r9Au2S8mm2TY0myzJrFiW/gwvHhTx6q/x5r8xbfegrQ8GHu/NMDMvTAQ34LrfTmFtfWNzq7hd2tnd2z8oHx61jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXB8N/M7j0wbrmQTJgkLYjKUPOKUgJX8HrAnyJrNaf+yX664VXcOvEq8nFRQjka//NUbKJrGTAIVxBjfcxMIMqKBU8GmpV5qWELomAyZb6kkMTNBNj95is+sMsCR0rYk4Ln6eyIjsTGTOLSdMYGRWfZm4n+en0J0E2RcJikwSReLolRgUHj2Px5wzSiIiSWEam5vxXRENKFgUyrZELzll1dJ+6LqXVVrD7VK/TaPo4hO0Ck6Rx66RnV0jxqohShS6Bm9ojcHnBfn3flYtBacfOYY/YHz+QNJrZFE</latexit>

TT3
<latexit sha1_base64="/7gyrS2SICKBEsfqCvLMHnV3oew=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqexqUY9FLx4r9Au2S8mm2TY0myzJrFiW/gwvHhTx6q/x5r8xbfegrQ8GHu/NMDMvTAQ34LrfTmFtfWNzq7hd2tnd2z8oHx61jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXB8N/M7j0wbrmQTJgkLYjKUPOKUgJX8HrAnyJrNaf+yX664VXcOvEq8nFRQjka//NUbKJrGTAIVxBjfcxMIMqKBU8GmpV5qWELomAyZb6kkMTNBNj95is+sMsCR0rYk4Ln6eyIjsTGTOLSdMYGRWfZm4n+en0J0E2RcJikwSReLolRgUHj2Px5wzSiIiSWEam5vxXRENKFgUyrZELzll1dJ+6LqXVVrD7VK/TaPo4hO0Ck6Rx66RnV0jxqohShS6Bm9ojcHnBfn3flYtBacfOYY/YHz+QNJrZFE</latexit>

TT3
<latexit sha1_base64="Eu9aKfw48M//PI0scALh4r/9rfA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPRi8cK/YI2lM120i7dbMLuRCyhP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLEikMuu63U1hb39jcKm6Xdnb39g/Kh0ctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+BG1ErBo4ScCP2FCJUHCGVur2EJ4wazSmfa9frrhVdw66SrycVEiOer/81RvEPI1AIZfMmK7nJuhnTKPgEqalXmogYXzMhtC1VLEIjJ/NT57SM6sMaBhrWwrpXP09kbHImEkU2M6I4cgsezPxP6+bYnjjZ0IlKYLii0VhKinGdPY/HQgNHOXEEsa1sLdSPmKacbQplWwI3vLLq6R1UfWuqpcPl5XabR5HkZyQU3JOPHJNauSe1EmTcBKTZ/JK3hx0Xpx352PRWnDymWPyB87nD0alkUI=</latexit>

TT1
<latexit sha1_base64="/7gyrS2SICKBEsfqCvLMHnV3oew=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqexqUY9FLx4r9Au2S8mm2TY0myzJrFiW/gwvHhTx6q/x5r8xbfegrQ8GHu/NMDMvTAQ34LrfTmFtfWNzq7hd2tnd2z8oHx61jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXB8N/M7j0wbrmQTJgkLYjKUPOKUgJX8HrAnyJrNaf+yX664VXcOvEq8nFRQjka//NUbKJrGTAIVxBjfcxMIMqKBU8GmpV5qWELomAyZb6kkMTNBNj95is+sMsCR0rYk4Ln6eyIjsTGTOLSdMYGRWfZm4n+en0J0E2RcJikwSReLolRgUHj2Px5wzSiIiSWEam5vxXRENKFgUyrZELzll1dJ+6LqXVVrD7VK/TaPo4hO0Ck6Rx66RnV0jxqohShS6Bm9ojcHnBfn3flYtBacfOYY/YHz+QNJrZFE</latexit>

TT3

Ordered
ready queue

<latexit sha1_base64="Eu9aKfw48M//PI0scALh4r/9rfA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPRi8cK/YI2lM120i7dbMLuRCyhP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLEikMuu63U1hb39jcKm6Xdnb39g/Kh0ctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+BG1ErBo4ScCP2FCJUHCGVur2EJ4wazSmfa9frrhVdw66SrycVEiOer/81RvEPI1AIZfMmK7nJuhnTKPgEqalXmogYXzMhtC1VLEIjJ/NT57SM6sMaBhrWwrpXP09kbHImEkU2M6I4cgsezPxP6+bYnjjZ0IlKYLii0VhKinGdPY/HQgNHOXEEsa1sLdSPmKacbQplWwI3vLLq6R1UfWuqpcPl5XabR5HkZyQU3JOPHJNauSe1EmTcBKTZ/JK3hx0Xpx352PRWnDymWPyB87nD0alkUI=</latexit>

TT1
<latexit sha1_base64="R/HAbaVuBRI78Osm1fmtAiEHusw=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqeyWoh6LXjxW6Bdsl5JNs21oNlmSWbEs/RlePCji1V/jzX9j2u5BWx8MPN6bYWZemAhuwHW/ncLG5tb2TnG3tLd/cHhUPj7pGJVqytpUCaV7ITFMcMnawEGwXqIZiUPBuuHkbu53H5k2XMkWTBMWxGQkecQpASv5fWBPkLVas0FtUK64VXcBvE68nFRQjuag/NUfKprGTAIVxBjfcxMIMqKBU8FmpX5qWELohIyYb6kkMTNBtjh5hi+sMsSR0rYk4IX6eyIjsTHTOLSdMYGxWfXm4n+en0J0E2RcJikwSZeLolRgUHj+Px5yzSiIqSWEam5vxXRMNKFgUyrZELzVl9dJp1b1rqr1h3qlcZvHUURn6BxdIg9dowa6R03URhQp9Ixe0ZsDzovz7nwsWwtOPnOK/sD5/AFIKZFD</latexit>

TT2
<latexit sha1_base64="/7gyrS2SICKBEsfqCvLMHnV3oew=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqexqUY9FLx4r9Au2S8mm2TY0myzJrFiW/gwvHhTx6q/x5r8xbfegrQ8GHu/NMDMvTAQ34LrfTmFtfWNzq7hd2tnd2z8oHx61jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXB8N/M7j0wbrmQTJgkLYjKUPOKUgJX8HrAnyJrNaf+yX664VXcOvEq8nFRQjka//NUbKJrGTAIVxBjfcxMIMqKBU8GmpV5qWELomAyZb6kkMTNBNj95is+sMsCR0rYk4Ln6eyIjsTGTOLSdMYGRWfZm4n+en0J0E2RcJikwSReLolRgUHj2Px5wzSiIiSWEam5vxXRENKFgUyrZELzll1dJ+6LqXVVrD7VK/TaPo4hO0Ck6Rx66RnV0jxqohShS6Bm9ojcHnBfn3flYtBacfOYY/YHz+QNJrZFE</latexit>

TT3
<latexit sha1_base64="Eu9aKfw48M//PI0scALh4r/9rfA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPRi8cK/YI2lM120i7dbMLuRCyhP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLEikMuu63U1hb39jcKm6Xdnb39g/Kh0ctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+BG1ErBo4ScCP2FCJUHCGVur2EJ4wazSmfa9frrhVdw66SrycVEiOer/81RvEPI1AIZfMmK7nJuhnTKPgEqalXmogYXzMhtC1VLEIjJ/NT57SM6sMaBhrWwrpXP09kbHImEkU2M6I4cgsezPxP6+bYnjjZ0IlKYLii0VhKinGdPY/HQgNHOXEEsa1sLdSPmKacbQplWwI3vLLq6R1UfWuqpcPl5XabR5HkZyQU3JOPHJNauSe1EmTcBKTZ/JK3hx0Xpx352PRWnDymWPyB87nD0alkUI=</latexit>

TT1
<latexit sha1_base64="R/HAbaVuBRI78Osm1fmtAiEHusw=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqeyWoh6LXjxW6Bdsl5JNs21oNlmSWbEs/RlePCji1V/jzX9j2u5BWx8MPN6bYWZemAhuwHW/ncLG5tb2TnG3tLd/cHhUPj7pGJVqytpUCaV7ITFMcMnawEGwXqIZiUPBuuHkbu53H5k2XMkWTBMWxGQkecQpASv5fWBPkLVas0FtUK64VXcBvE68nFRQjuag/NUfKprGTAIVxBjfcxMIMqKBU8FmpX5qWELohIyYb6kkMTNBtjh5hi+sMsSR0rYk4IX6eyIjsTHTOLSdMYGxWfXm4n+en0J0E2RcJikwSZeLolRgUHj+Px5yzSiIqSWEam5vxXRMNKFgUyrZELzVl9dJp1b1rqr1h3qlcZvHUURn6BxdIg9dowa6R03URhQp9Ixe0ZsDzovz7nwsWwtOPnOK/sD5/AFIKZFD</latexit>

TT2
<latexit sha1_base64="Eu9aKfw48M//PI0scALh4r/9rfA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPRi8cK/YI2lM120i7dbMLuRCyhP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLEikMuu63U1hb39jcKm6Xdnb39g/Kh0ctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+BG1ErBo4ScCP2FCJUHCGVur2EJ4wazSmfa9frrhVdw66SrycVEiOer/81RvEPI1AIZfMmK7nJuhnTKPgEqalXmogYXzMhtC1VLEIjJ/NT57SM6sMaBhrWwrpXP09kbHImEkU2M6I4cgsezPxP6+bYnjjZ0IlKYLii0VhKinGdPY/HQgNHOXEEsa1sLdSPmKacbQplWwI3vLLq6R1UfWuqpcPl5XabR5HkZyQU3JOPHJNauSe1EmTcBKTZ/JK3hx0Xpx352PRWnDymWPyB87nD0alkUI=</latexit>

TT1
<latexit sha1_base64="/7gyrS2SICKBEsfqCvLMHnV3oew=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqexqUY9FLx4r9Au2S8mm2TY0myzJrFiW/gwvHhTx6q/x5r8xbfegrQ8GHu/NMDMvTAQ34LrfTmFtfWNzq7hd2tnd2z8oHx61jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXB8N/M7j0wbrmQTJgkLYjKUPOKUgJX8HrAnyJrNaf+yX664VXcOvEq8nFRQjka//NUbKJrGTAIVxBjfcxMIMqKBU8GmpV5qWELomAyZb6kkMTNBNj95is+sMsCR0rYk4Ln6eyIjsTGTOLSdMYGRWfZm4n+en0J0E2RcJikwSReLolRgUHj2Px5wzSiIiSWEam5vxXRENKFgUyrZELzll1dJ+6LqXVVrD7VK/TaPo4hO0Ck6Rx66RnV0jxqohShS6Bm9ojcHnBfn3flYtBacfOYY/YHz+QNJrZFE</latexit>

TT3
<latexit sha1_base64="/7gyrS2SICKBEsfqCvLMHnV3oew=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqexqUY9FLx4r9Au2S8mm2TY0myzJrFiW/gwvHhTx6q/x5r8xbfegrQ8GHu/NMDMvTAQ34LrfTmFtfWNzq7hd2tnd2z8oHx61jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXB8N/M7j0wbrmQTJgkLYjKUPOKUgJX8HrAnyJrNaf+yX664VXcOvEq8nFRQjka//NUbKJrGTAIVxBjfcxMIMqKBU8GmpV5qWELomAyZb6kkMTNBNj95is+sMsCR0rYk4Ln6eyIjsTGTOLSdMYGRWfZm4n+en0J0E2RcJikwSReLolRgUHj2Px5wzSiIiSWEam5vxXRENKFgUyrZELzll1dJ+6LqXVVrD7VK/TaPo4hO0Ck6Rx66RnV0jxqohShS6Bm9ojcHnBfn3flYtBacfOYY/YHz+QNJrZFE</latexit>

TT3
<latexit sha1_base64="/7gyrS2SICKBEsfqCvLMHnV3oew=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqexqUY9FLx4r9Au2S8mm2TY0myzJrFiW/gwvHhTx6q/x5r8xbfegrQ8GHu/NMDMvTAQ34LrfTmFtfWNzq7hd2tnd2z8oHx61jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXB8N/M7j0wbrmQTJgkLYjKUPOKUgJX8HrAnyJrNaf+yX664VXcOvEq8nFRQjka//NUbKJrGTAIVxBjfcxMIMqKBU8GmpV5qWELomAyZb6kkMTNBNj95is+sMsCR0rYk4Ln6eyIjsTGTOLSdMYGRWfZm4n+en0J0E2RcJikwSReLolRgUHj2Px5wzSiIiSWEam5vxXRENKFgUyrZELzll1dJ+6LqXVVrD7VK/TaPo4hO0Ck6Rx66RnV0jxqohShS6Bm9ojcHnBfn3flYtBacfOYY/YHz+QNJrZFE</latexit>

TT3
<latexit sha1_base64="Eu9aKfw48M//PI0scALh4r/9rfA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPRi8cK/YI2lM120i7dbMLuRCyhP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLEikMuu63U1hb39jcKm6Xdnb39g/Kh0ctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+BG1ErBo4ScCP2FCJUHCGVur2EJ4wazSmfa9frrhVdw66SrycVEiOer/81RvEPI1AIZfMmK7nJuhnTKPgEqalXmogYXzMhtC1VLEIjJ/NT57SM6sMaBhrWwrpXP09kbHImEkU2M6I4cgsezPxP6+bYnjjZ0IlKYLii0VhKinGdPY/HQgNHOXEEsa1sLdSPmKacbQplWwI3vLLq6R1UfWuqpcPl5XabR5HkZyQU3JOPHJNauSe1EmTcBKTZ/JK3hx0Xpx352PRWnDymWPyB87nD0alkUI=</latexit>

TT1
<latexit sha1_base64="/7gyrS2SICKBEsfqCvLMHnV3oew=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqexqUY9FLx4r9Au2S8mm2TY0myzJrFiW/gwvHhTx6q/x5r8xbfegrQ8GHu/NMDMvTAQ34LrfTmFtfWNzq7hd2tnd2z8oHx61jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXB8N/M7j0wbrmQTJgkLYjKUPOKUgJX8HrAnyJrNaf+yX664VXcOvEq8nFRQjka//NUbKJrGTAIVxBjfcxMIMqKBU8GmpV5qWELomAyZb6kkMTNBNj95is+sMsCR0rYk4Ln6eyIjsTGTOLSdMYGRWfZm4n+en0J0E2RcJikwSReLolRgUHj2Px5wzSiIiSWEam5vxXRENKFgUyrZELzll1dJ+6LqXVVrD7VK/TaPo4hO0Ck6Rx66RnV0jxqohShS6Bm9ojcHnBfn3flYtBacfOYY/YHz+QNJrZFE</latexit>

TT3

BLC
+
LLF

BLC
+
mLLF

TB
+
mLLF<latexit sha1_base64="/7gyrS2SICKBEsfqCvLMHnV3oew=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqexqUY9FLx4r9Au2S8mm2TY0myzJrFiW/gwvHhTx6q/x5r8xbfegrQ8GHu/NMDMvTAQ34LrfTmFtfWNzq7hd2tnd2z8oHx61jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXB8N/M7j0wbrmQTJgkLYjKUPOKUgJX8HrAnyJrNaf+yX664VXcOvEq8nFRQjka//NUbKJrGTAIVxBjfcxMIMqKBU8GmpV5qWELomAyZb6kkMTNBNj95is+sMsCR0rYk4Ln6eyIjsTGTOLSdMYGRWfZm4n+en0J0E2RcJikwSReLolRgUHj2Px5wzSiIiSWEam5vxXRENKFgUyrZELzll1dJ+6LqXVVrD7VK/TaPo4hO0Ck6Rx66RnV0jxqohShS6Bm9ojcHnBfn3flYtBacfOYY/YHz+QNJrZFE</latexit>

TT3

Deadline miss Deadline miss Deadline miss

Deadline miss

<latexit sha1_base64="k6+or+hRm1RWg7sP6i7y20isqrI=">AAACRXicbVDLSgMxFM34rOOr6tJNsAiuyoygFaFQ2o1ChQodW+jUIZOmbWjmQZIRy9Av8W/ciFt3oh/gxoUibjXTqeDrkpBzzz2HJMcNGRXSMO61qemZ2bn5zIK+uLS8sppdWz8TQcQxsXDAAt50kSCM+sSSVDLSDDlBnstIwx1UknnjgnBBA78uhyFpe6jn0y7FSCrKydq2rZerlUN1VJ0TWIS7Ch2fx/X6qGjk99KGdhgZFWHap6teTiyuE3vocjSWT7zWV6PUTjZn5I1xwb/AnIBcaWvn8aFwe1Vzsnd2J8CRR3yJGRKiZRqhbMeIS4rVE3Q7EiREeIB6pKWgjzwi2vE4hRHcVkwHdgOuti/hmP3uiJEnxNBzldJDsi9+zxLyv1krkt2Ddkz9MJLEx+lF3YhBGcAkUtihnGDJhgogzKl6K8R9xBGWKnhdhWD+/vJfcLabN/fze6dmrlQGaWXAJtgCO8AEBVACR6AGLIDBNXgCL+BVu9GetTftPZVOaRPPBvhR2scnMmKuzQ==</latexit>

BLC :
LM = 2
ITT = 0.5
Iidle = 0.5

TB :
bTT
max = 2

UTT = 0.5

Fig. 4: (a) LLF under a BLC constraint vs. (b) mLLF under a BLC constraint vs. (c) mLLF under a TB constraint.

C. Burst Limiting Least Laxity First (B3LF)

Simulating well-known mechanisms like Earliest-Deadline-
First (EDF) [53] or Least-Laxity-First (LLF) [54] has been
widely used to generate static schedule tables (e.g., [55],
[28]). However, we show a counterexample (c.f. Fig. 4 (a) vs.
Fig. 4 (b)) where such an approach is not optimal under the
BLC, leading to deadline misses. The problem with EDF/LLF
under the BLC is that they can reach the maximum burst by
scheduling a task immediately, e.g., if it is the only one in the
ready queue, even though it has enough slack and could be
executed later. Thus, at the next slot, there is no more available
budget, and any 0-slack TT task that has been released cannot
be scheduled, leading to a deadline miss (c.f. Fig. 4 (a)). This
problem will persist under any work-conserving algorithm
since sometimes it may be necessary to insert idle times to
have the full burst at a later time when it may be needed.

To solve this problem, we combine the BLC with a modified
LLF (mLLF) algorithm (Sec. III-C1). Together, the BLC and
the mLLF algorithm result in a scheduler that we call Burst
Limiting Least Laxity First scheduler (B3LF) (Alg. 1) that
enforces both TT and ET task deadlines. B3LF respects the
proposed BLC by construction.

First, we show that mLLF itself does not negatively con-
strain the TT tasks, so by modeling the BLC, we are able
to model the TT constraint enforced by the whole B3LF.
Hence, to model the B3LF in RTC, we separate it into its
two components: the BLC and the mLLF, as illustrated in
Fig. 5. The B3LF creates a TT schedule table such that the TT
arrival curve at runtime is αTT

sp ≤ αTT (t) = UTT ·t+bTT
max, to

enforce ET deadlines (Theorem 5). In our model, the schedule
is the output of the mLLF, which itself depends on the BLC.
Thus αTT

sp is limited by a maximum service curve of the B3LF
γTT
b3lf (t), which is the minimum of maximum service curves

of the BLC γTT
blc (t) and mLLF γTT

mllf (t):
αTT
sp (t) ≤ γTT

b3lf (t) = min(γTT
blc (t), γ

TT
mllf (t)).

However, as will be shown in Theorem 7, our computed lower

"TTTech - Internal"

TT
tasks

Calculate affine
TT envelope

<latexit sha1_base64="6VDyXEC7/0+AQddJgtuJiSX8uDw=">AAACFHicbZDLSgMxFIYzXmu9VV26CRahUigzUtSNUHTjskJv0NZyJk3b0MyF5IxYhj6EG1/FjQtF3Lpw59uYTrvQ1h8CX/5zDsn53VAKjbb9bS0tr6yurac20ptb2zu7mb39mg4ixXiVBTJQDRc0l8LnVRQoeSNUHDxX8ro7vJ7U6/dcaRH4FRyFvO1B3xc9wQCN1cnkWyDDAdzFlco4hyeX1YRarBsgRZqnbnLvxB48jDuZrF2wE9FFcGaQJTOVO5mvVjdgkcd9ZBK0bjp2iO0YFAom+TjdijQPgQ2hz5sGffC4bsfJUmN6bJwu7QXKHB9p4v6eiMHTeuS5ptMDHOj52sT8r9aMsHfRjoUfRsh9Nn2oF0mKAZ0kRLtCcYZyZACYEuavlA1AAUOTY9qE4MyvvAi104JzVijeFrOlq1kcKXJIjkiOOOSclMgNKZMqYeSRPJNX8mY9WS/Wu/UxbV2yZjMH5I+szx/ck54Z</latexit>

↵TT (t) = UTT · t + bTT
max

ET
tasks

BLC
<latexit sha1_base64="ZxWgTv+K/w6UXE2fFLvvuCB9A9g=">AAAB73icbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFN7qrYB/QjiWTybShmWRMMkIZ+hNuXCji1t9x59+YtrPQ1gOBwzn33tx7goQzbVz32ymsrK6tbxQ3S1vbO7t75f2DlpapIrRJJJeqE2BNORO0aZjhtJMoiuOA03Ywup767SeqNJPi3owT6sd4IFjECDZW6tw+ZCzkdNIvV9yqOwNaJl5OKpCj0S9/9UJJ0pgKQzjWuuu5ifEzrAwjdl6pl2qaYDLCA9q1VOCYaj+b7TtBJ1YJUSSVfcKgmfq7I8Ox1uM4sJUxNkO96E3F/7xuaqJLP2MiSQ0VZP5RlHJkJJoej0KmKDF8bAkmitldERlihYmxEZVsCN7iycukdVb1zqu1u1qlfpXHUYQjOIZT8OAC6nADDWgCAQ7P8ApvzqPz4rw7H/PSgpP3HMIfOJ8/KSKQEA==</latexit>

Iidle
<latexit sha1_base64="b0VG5nRgH4lDhivryomAsYP8dLs=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mVUj0WveitQr+gXUs2zbax2WRJskJZ+h+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dnJr6xubW/ntws7u3v5B8fCopWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2Mb2Z++4kqzaRomElM/QgPBQsZwcZKrbuHtNGY9oslt+zOgVaJl5ESZKj3i1+9gSRJRIUhHGvd9dzY+ClWhhFOp4VeommMyRgPaddSgSOq/XR+7RSdWWWAQqlsCYPm6u+JFEdaT6LAdkbYjPSyNxP/87qJCa/8lIk4MVSQxaIw4chINHsdDZiixPCJJZgoZm9FZIQVJsYGVLAheMsvr5LWRdmrliv3lVLtOosjDydwCufgwSXU4Bbq0AQCj/AMr/DmSOfFeXc+Fq05J5s5hj9wPn8AZPmPBg==</latexit>

ITT
<latexit sha1_base64="ZY5LPM+U8aNO2BNXPu/tm+SMKag=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9BLx4UIpoHJEuYnUySIbOzy0yvEJZ8ghcPinj1i7z5N06SPWhiQUNR1U13VxBLYdB1v53cyura+kZ+s7C1vbO7V9w/aJgo0YzXWSQj3Qqo4VIoXkeBkrdizWkYSN4MRtdTv/nEtRGResRxzP2QDpToC0bRSg+33btuseSW3RnIMvEyUoIMtW7xq9OLWBJyhUxSY9qeG6OfUo2CST4pdBLDY8pGdMDblioacuOns1Mn5MQqPdKPtC2FZKb+nkhpaMw4DGxnSHFoFr2p+J/XTrB/6adCxQlyxeaL+okkGJHp36QnNGcox5ZQpoW9lbAh1ZShTadgQ/AWX14mjbOyd16u3FdK1assjjwcwTGcggcXUIUbqEEdGAzgGV7hzZHOi/PufMxbc042cwh/4Hz+APX3jZk=</latexit>

LM

mLLF
<latexit sha1_base64="ewDXALEmqnRDMxlpjdYfO2t7Sq8=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDy2rtvlap3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPn02PLA==</latexit>�

Static
schedule

table

B3LF

<latexit sha1_base64="F0koFeRFwcTW2phVRsRexPZn52Q=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi6rIogssKfUEby2Q6aYdOJmFmUighf+LGhSJu/RN3/o2TNgttPTBwOOde7pnjx5wp7TjfVmltfWNzq7xd2dnd2z+wD4/aKkokoS0S8Uh2fawoZ4K2NNOcdmNJcehz2vEnd7nfmVKpWCSaehZTL8QjwQJGsDbSwLb7IdZjgnnazJ7S+2Y2sKtOzZkDrRK3IFUo0BjYX/1hRJKQCk04VqrnOrH2Uiw1I5xmlX6iaIzJBI9oz1CBQ6q8dJ48Q2dGGaIgkuYJjebq740Uh0rNQt9M5jnVspeL/3m9RAc3XspEnGgqyOJQkHCkI5TXgIZMUqL5zBBMJDNZERljiYk2ZVVMCe7yl1dJ+6LmXtUuHy+r9duijjKcwCmcgwvXUIcHaEALCEzhGV7hzUqtF+vd+liMlqxi5xj+wPr8Acmkk8U=</latexit>

T ET

<latexit sha1_base64="ecuv5bvifHmAKxcUIGFZpsQah5M=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRS1GXRjcsK6QPaWCbTSTt0Mgkzk0IJ/RM3LhRx65+482+ctFlo64GBwzn3cs+cIOFMacf5tkobm1vbO+Xdyt7+weGRfXzSVnEqCW2RmMeyG2BFORO0pZnmtJtIiqOA004wuc/9zpRKxWLh6VlC/QiPBAsZwdpIA9vuR1iPCeaZN3/KPG8+sKtOzVkArRO3IFUo0BzYX/1hTNKICk04VqrnOon2Myw1I5zOK/1U0QSTCR7RnqECR1T52SL5HF0YZYjCWJonNFqovzcyHCk1iwIzmedUq14u/uf1Uh3e+hkTSaqpIMtDYcqRjlFeAxoySYnmM0MwkcxkRWSMJSbalFUxJbirX14n7auae12rP9arjbuijjKcwTlcggs30IAHaEILCEzhGV7hzcqsF+vd+liOlqxi5xT+wPr8AeB+k9Q=</latexit>

T TT

Fig. 5: B3LF and BLC parameterization

bound of the maximum service offered by the mLLF to TT
tasks is only limited by the CPU capacity λ = 1. So, to shape
the TT input arrival curve in strict priority (SP), we choose to
use the BLC:

αTT
sp (t) ≤ γTT

blc (t) = Iidle · t+ LM .

From the ET tasks, we have computed the affine TT envelope
αTT (t) to enforce the ET deadlines. Then, we set the BLC
parameters Iidle = UTT , ITT = λ − UTT and LM = bTT

max

and so we obtain a schedule with αTT
sp (t) ≤ αTT (t) = UTT ·

t+ bTT
max, as shown in Fig. 5.

The BLC ensures that ET constraints are met by enforcing
the TT slot allocation according to Definition 3 with the budget
replenishment and consumption rates given by Iidle and ITT ,
respectively, within the budget bounds 0 and LM . However, we
also need to ensure that TT tasks are schedulable. Employing
a standard LLF (or EDF) without BLC will only result in the
schedulability of the TT tasks as shown below (Theorem 7).

Theorem 7 (Lower bound of LLF and mLLF maximum
service curve for TT tasks). The lower bound of the maximum
service offered to a set of TT tasks scheduled using the Least
Laxity First, with (mLLF) or without (LLF) our proposed
modification to add Idle tasks, for a processing capacity of
λ, is: γTT

llf (t) = γTT
mllf (t) = λ · t.

Proof. If the utilization UTT = λ, then LLF/mLLF assigns
all the slots to TT, and the full processing capacity is used by
TT. In the case of mLLF, the TT duration and deadlines also
have to be carefully selected so there is always a TT task that
has 0 laxity to prevent the idle task from being selected if its
laxity reaches 0. So C(t)−C(s) ≤ λ · (t− s) = γTT

llf (t− s) =

Algorithm 1: TT schedule generation under the BLC
Data: TT set T TT , TT utilization UTT , max burst bTT

max,
hyperperiod HP , processing capacity λ

1 ITT ← λ− UTT ; Iidle ← UTT ; LM ← bTT
max;

2 min budget =
min(HP − last deadline(T TT , HP) · Iidle, LM); /* Min
budget at end of HP */

3 initial budget← min budget; /* Can we find a schedule
for the minimal budget? */

4 σ = mLLF (initial budget, T TT , HP,LM , ITT , Iidle);
5 if σ ̸= ∅ then
6 return σ; /* A schedule has been found */

7 if initial budget == LM then
8 return ∅; /* No schedule can be found */

9 initial budget = LM ; /* Can we find a schedule for the
maximal budget? */

10 σ = mLLF (initial budget, T TT , HP,LM , ITT , Iidle);
11 if σ == ∅ then
12 return ∅; /* No schedule can be found */

/* Finally, we compute schedules with mLLF Sec. III-C1
until we find a schedule with at least as much
budget at t=HP as at t=0, or fail */

13 while σ ̸= ∅ ∧ initial budget > max(min budget, bdgσ(t)) do
14 initial budget = ⌊ bdgσ(t)

ITT ⌋ · ITT ;/* set initial budget

for the next iteration */

15 σ = mLLF (initial budget, T TT , HP,LM , ITT , Iidle);

16 if σ == ∅ ∨ initial budget ≤ min budget then
17 return ∅; /* No schedule can be found */

18 return σ;

γTT
mllf (t− s),∀s ≤ t, according to Definition 2. Hence, λ · t is

a maximum service curve, and any lower service would not
be a maximum service offered to TT tasks by LLF/mLLF, as
shown by this counter-example.

The goal is now to compute a schedule σ which will repeat
indefinitely such that ∀t, the budget remains between 0 and the
maximum value LM = bTT

max, to enforce the ET deadlines. We
define the helper function last_deadline(T TT , HP),
which returns the last deadline of a TT task within the
hyperperiod HP . This is the last theoretical slot that can be
attributed to a TT task. After that time, the budget will only
increase, which gives us a minimal value for the budget at
the end of HP . At time 0, the current budget is set to LM .
However, at the end of the first hyperperiod HP , the budget
bdgσ(HP) may be lower than at the start of the hyperperiod,
meaning that we may not be able to repeat the same TT
schedule as in the first hyperperiod and still fulfill the BLC
if the schedule keeps consuming more budget than is gained.
Depending on σ, this may be due to the saturation of the
budget at LM . However, for the same schedule σ, as the budget
at the start of a hyperperiod decreases, the saturation duration
also decreases, and more budget is gained. The schedule can
only be repeated indefinitely if, at some point, the sum of
the budget gained in a hyperperiod is greater than the budget
consumed during the same hyperperiod while still fulfilling
the BLC. Consequently, we must find σ and bdgσ(0) fulfilling
the necessary condition: bdgσ(0) ≤ bdgσ(HP) to ensure that
this σ is valid ∀t. We also define two sufficient conditions for
schedulability and non-schedulability:

Algorithm 2: mLLF algorithm
Data: initial budget, T TT , hyperperiod HP , max. budget LM , TT

slot budget ITT , idle slot budget Iidle
1 t← 0; bdgσ ← initial budget; ∀ τi ∈ T TT : ci ← Ci; di ← Di;
2 while t < HP do
3 for τi ∈ T TT do
4 if (ci > 0∧ t ≥ di) then return ∅; /* Deadline miss */
5 if (t % Ti == 0) then ci ← Ci; di ← t+Di;

/* Release at time t */
6 if (ci > 0) then Li ← di − t− ci; /* Laxity of τi */

7 if bdgσ < LM − Iidle then
8 LID ← ⌊ bdgσITT ⌋;
9 else

10 LID ← HP ;/* τID gets the highest laxity */

11 if LID < Li, ∀τi ∈ T TT : ci > 0 then
12 σ[t]← τID ; /* Schedule idle slot if τID has

least laxity of all ready tasks. */

13 bdgσ ← min(bdgσ + Iidle, LM);
14 else
15 if

(
bdgσ ≥ ITT

)
∧
([
ci > 0, ∀τi ∈ T TT

]
̸= ∅

)
then

/* Schedule least-laxity ready task if
there is enough budget */

16 σ[t]← τi = LL(t, T TT); ci ← ci − 1;
bdgσ ← bdgσ − ITT ;

17 else
/* Schedule idle slot */

18 σ[t]← τID ; bdgσ ← min(bdgσ + Iidle, LM);

19 t← t+ 1;

20 return σ;

• if a schedule σ is found with the initial budget bdgσ(0)
at the minimal achievable final value min budget(HP),
i.e., corresponding to the number of idle times between
the last deadline and HP , then this schedule is valid ∀ t;

• if no schedule is found with budget LM at time 0,
bdgσ(0) = LM , then no schedule exists.

Hence, in Alg. 1, we start by checking both
sufficient conditions (lines 3 & 9) using our mLLF
scheduler (c.f. Alg. 2 in Sec. III-C1) via function
mLLF(initial_budget, T TT , HP,LM , ITT , Iidle), where a
schedule is generated according to the initial budget parameter.
If the conditions are not fulfilled, we run the mLLF scheduler
with different initial budgets (Line 13), starting with an initial
budget equal to the budget at HP . To reduce the search,
we set (Line 14) the new initial budget to be a multiple of
ITT rather than directly bdgσ(t) since this reduces the search
space without a significant negative impact. In some test cases
(c.f. Sec. IV), the schedulability was reduced slightly, while
the runtime was reduced significantly, sometimes by up to
98.9%. Alg. 1 ends when a solution σ is found (i.e., bdgσ(0)
≤ bdgσ(HP)), or when the final budget reaches the minimum
final budget possible, bdgσ(HP) ≤ min budget(HP), since
when no solution is found, the function of the final budget
σ 7→ bdgσ(HP) is strictly decreasing from one iteration to
the next.

1) mLLF algorithm: Least Laxity First) (LLF) [54] assigns
dynamic priorities according to the current task laxity. We use
LLF (instead of, e.g., EDF) because it better suits our need
to track the BLC budget consumption and replenishment at
any instant on the discrete timeline since LLF is a job-level

dynamic priority algorithm (as opposed to EDF, which keeps
priorities fixed at job-level). Moreover, some practical runtime
issues associated with LLF (e.g., the complex implementation
or runtime calculation of laxity values) are not a concern here
since we only use LLF offline to generate static schedules.
Additionally, the high preemption overhead due to “thrashing”
can be mitigated either by directly using modifications like
ELLF [56] or by post-processing, shifting thrashing slots to
create as many contiguous same-TT task slots.

Our mLLF scheduler (Alg. 2) works very similarly to the
standard algorithm in that at each point in time t we compute
the slack (or laxity) of a task τi ∈ T TT as Li(t) = Di(t) −
Ci(t), where Di(t) represents the duration from time t to the
next deadline of the task, and Ci(t) represents the remaining
computation time at time t. In addition to the TT tasks that are
considered by our mLLF, we introduce a special IDLE task,
denoted τID, that is responsible for introducing idle slots into
the schedule σ. The WCET, period, and deadline of τID are
irrelevant since the special idle task will always be active and,
when selected, will introduce an idle slot into the schedule.
Let us denote the current budget of the BLC with bdgσ(t),
where each time the mLLF scheduler is called from Alg. 1, the
current budget is initialized to the given initial budget value.
The main aspect of the idle task is its laxity, computed as

LID(t) =

{
max

(
0,
⌊
bdgσ(t)
ITT

⌋)
if bdgσ(t) < LM − Iidle

HP otherwise
The laxity of τID at time t is the amount of time until an
idle slot must be scheduled because the budget will reach 0
when scheduling only TT tasks. If there is enough budget (i.e.,
bdgσ(t) ≥ ITT), we schedule the TT task with the least laxity
and set bdgσ = bdgσ − ITT . Else, we schedule an idle slot
and set bdgσ = min(bdgσ + Iidle, LM). Hence, the closer the
budget is to 0, the higher priority τID gets, but the scheduler
still allows a TT task to be scheduled if necessary. Thus, we
stay within the budget constraints of the BLC but also steer
the mLLF to prefer placing idle slots whenever the laxity of
TT tasks permits it. Interestingly, this customization does not
change the lower bound of the maximum service offered to
TT tasks defined in Theorem 7, which is also valid for mLLF.

D. Design optimization

In the design stage of a system, it is common that some
tasks might be added or changed later during the project life-
cycle. If TT tasks are known, and ET tasks are in an iterative
design process, recomputing a new schedule or checking
whether the old one still respects the deadlines of the new
ET task set may be cumbersome. We propose to use a design
optimization called LMminB3LF. First, using only the TT
tasks as input, we find the minimum LM , denoted LM,min,
such that a schedule σ is found in Alg. 1 and we store
(LM,min, σ). This schedule σ has the minimum impact on
ET schedulability that is achievable with our method. Then,
for each iteration of ET tasks (TT tasks are not modified,
so σ is unchanged), we need to run the RTC analysis once
(Theorem 4) with bTT = LM,min to check whether all the

ET deadlines are fulfilled with σ. We know that i) bTT
max is

upper bounded by CTT from Theorem 5; ii) LM ≥ ITT to
be able to schedule at least one TT slot; iii) increasing LM

increases the budget available for TT in the hyperperiod HP ,
so the schedulability of TT depending on LM is discontinuous:
not schedulable under LM,min, and schedulable over LM,min.
Hence, we propose to set ITT = λ−UTT , (λ = 1 for single-
core unit-speed CPU) and use a binary search to find the
minimum value of LM such as Alg. 1 finds a schedule σ.
The search can be limited to multiples of ITT to improve
runtime (see reasons in Sec. III-C).

This design optimization can also be applied to any TT
schedule synthesis that includes the BLC constraint. Moreover,
we note that there may exist L

′

M > LM with no valid TT
schedule, i.e., Alg. 1 is not optimal. However, the LM found
via the design optimization is not the global minimum but the
smallest out of a set of values sampled via binary search. After
we found this (local-minimum) LM , the TT schedule does not
change since the design optimization is for ET tasks only, and
TT tasks do not change, and no new TT tasks are added. If
ET tasks are changed or added, it is irrelevant if Alg. 1 is
non-optimal since we do not call Alg. 1 again; we just check
ET schedulability against the original LM .

E. Multicore and dependencies

The discussion so far has focused on single-core systems;
however, our method can be easily applied to distributed multi-
core systems. Creating TT schedules for modern distributed
multi-SoC multi-core platforms (c.f. [8], [9], [24]) with com-
plex dependencies between tasks involves first solving the
allocation problem resulting in partitioned or semi-partitioned
solutions. Then, for each core, a TT schedule that fulfills a
large number of constraints needs to be found. Our method
effectively imposes an additional specific constraint on when
slots for ET tasks must be inserted into the timeline and,
therefore, constitutes a necessary condition for the creation
of schedules for TT tasks that also ensures the schedulability
of ET tasks. Hence, our method is orthogonal to the multi-core
task allocation and scheduling dimensions. For example, the
burst limiting constraint calculated with our method can be
readily added as an additional constraint on TT tasks for the
different task-to-core allocations in swap moves of candidate
solutions, e.g., in heuristic methods like [25], [9], [26]. Our
LLF-based algorithm for generating time-triggered schedules
can be easily extended with a task-to-core allocation step and
hence applied to partitioned solutions in multi-core systems.
Moreover, we can include TT task dependencies to, e.g., a
TSN/TTEthernet network (a usual use-case in TT systems [9])
by altering the deadlines/releases of TT tasks in our mLLF
algorithm when creating the schedule to fulfill dependencies.

Here, we present a simple heuristic that considers a fully
partitioned solution for both TT and ET tasks. Since TT tasks
are dispatched according to a static schedule, no dynamic
migration decisions are being made at runtime. We also
consider a fully partitioned model for ET tasks and will handle
the global scheduling approach for ET tasks in future work,

noting that a (semi-)partitioned approach can achieve near-
optimal schedulability [57]. A semi-partitioned solution could
involve migrating TT tasks at certain predefined points (both
task- and job-level) as long as the computed TT schedules
include the migration overhead. The simple heuristic we used
consists in sorting the ET and TT tasks in ascending order of
laxity (i.e., Ti−Ci) and then assigning the tasks to the cores in
a round-robin way. If assigning a task to a core would cause an
overflow of the capacity of this core, then the core is skipped.
Consequently, all cores contain a mix of low to high laxity,
which increases the chance of the tasks being schedulable on
each core. Please note that this simple allocation method is
meant to show the applicability of our method to partitioned
multi-core systems and not the effectiveness of the allocation
heuristic itself.

IV. EXPERIMENTS

We compare our B3LF algorithm, including the design op-
timization (LMminB3LF), against SPoll [24], AdvPoll [24],
and Slot-Shifting [45], [30] in terms of schedulability and
runtime using an extensive set of experiments with over 50000
data points for each method.

We implemented the SPoll method as described in [24]
with the polling period of each ET task being chosen such
that it does not lead to a hyperperiod explosion. We select
the largest possible polling period that is lower than the
ideal polling period and for which the resulting hyperperiod
does not increase beyond 4HP . We implemented AdvPoll as
described in [24] using a greedy search that iterates through
200 equidistant polling task periods T p from the interval
[1, HP]. We also directly set Cp = ⌊(1 − UTT) · T p⌋ for
each polling task and do not use the suggested binary search
from [20] to reduce runtime, as described in [24]. We note,
however, that a more brute-force search for every T p up to
and beyond the hyperperiod may improve schedulability but
will also lead to a significant runtime increase1. Moreover,
since we assume that the TT tasks and the polling task have
implicit deadlines, we also can use the efficient utilization-
based test for every (Cp, T p) candidate instead of the more
complex one for constrained-deadline tasks from [58], favoring
AdvPoll even more over our approach in terms of runtime.
Similar to [24], we use an LLF schedule simulation until the
hyperperiod for both SPoll and AdvPoll to generate the static
TT schedule with the found polling task(s). We also compare
to Slot-Shifting [45] by implementing the offline schedulability
test for ET tasks and using an LLF simulation to generate the
TT schedule, as described in [24]. We note that it is difficult
to compare to Slot-Shifting fairly since the schedulability of
Slot-Shifting is highly dependent on the heuristic to initially
create and then change the TT schedule. However, the authors
of [45], [44], [30] do not provide an algorithm to guide the TT

1We ran the brute-force AdvPoll with (UTT , UET) = (20, 40) and
(30, 50) from Fig. 7. The AdvPoll schedulability increased from 50% to 57%
and from 30% to 49%. The avg. runtime increased from 4.2s to 2.1min and
from 6.9s to 3.1min. Our B3LF method was still superior with 65% and 52%
schedulability and avg. runtime of 144ms and 214ms, respectively.

schedule changes in case of ET infeasibility. If the ET tasks
are not schedulable with the initial TT schedule, we generate
a new LLF-based schedule using both TT and ET tasks as
periodic tasks, mark the ET slots as empty, and try again.
For arbitrary deadlines, which AdvPoll and Slot-Shifting do
not support, we have taken the simplification of computing
schedulability using min(Di, Ti).

All algorithms were implemented in Python, and all ex-
periments were run on an Apple MacBook M1 Pro 10-core
(3.12GHz) with 16GB RAM, using only 1 core per test case.

A. Synthetic test cases

We extended the task generator from [59], [60] to create
task sets with TT and ET tasks with a deadline-monotonic
priority assignment. All generated task sets are schedulable if
the ET tasks are considered periodic TT tasks.

For the first set of experiments, we compare the approaches
in terms of schedulability and runtime for use cases with
different period sets and microtick values. For test suite 1
(Figs. 6 and 8), we selected a microtick of 250µs and periods
selected from the set {5, 10, 20, 40, 80}ms with a distribution
of {9.166%, 26.66%, 12.5%, 19.166%, 32.5%}. For the period
values and distribution of this test suite, we analyzed a real-
world automotive use case (c.f. Sec. IV-B) containing 120
tasks, generating similar task sets. For test suite 2 (Figs. 7
and 9), we selected a 100µs microtick and used periods which
correspond to those found in automotive applications [61],
[62], [27], namely {1, 2, 5, 10, 20, 50, 100, 200, 1000}ms. We
try to emulate the realistic period distribution described in
Table III of [62], without the angle-synchronous activation.
We also performed experiments using a microtick of 1ms
and periods uniformly chosen from the set {200, 300, 400}ms
(test suite 3) and with a 10µs microtick and periods of
{20, 30, 40}ms (test suite 4) which confirmed our results
but are not included due to space limitations. In practice, a
10µs microtick will infer too much overhead. For real-world
overhead measurements of different microticks in embedded
TT systems, we refer the reader to Fig. 6 of [55] and note that
our method can be applied to any microtick.

For all synthetic test sets, we use 30 TT and 20 ET tasks
per task set and 100 task sets per test case, similar to [24].
For the constrained ET deadline test cases, we select Di

uniformly in the upper half of the interval [Ci, Ti], and for
arbitrary ET deadlines, we choose Di uniformly in the interval
[Ci, 5 · Ti]. We vary UTT , UET ∈ {0.1, 0.2, .., 0.7} such that
UTT +UET ≤ 0.9 resulting in 34 tuples (UTT , UET) as seen
on the x-axis of Figs. 6 - 9. In some cases, there is a minor
difference in terms of schedulability between LMminB3LF
and B3LF (1− 4%) since we consider only multiples of ITT

for the values of LM in LMminB3LF. However, since, in most
cases, the schedulability is the same, we do not show them
individually in the plots to maintain readability.

For constrained-deadline systems (Fig. 6 and 7), our method
consistently outperforms AdvPoll, SPoll, and Slot-shifting in
terms of schedulability (left y-axis) for all tested systems, es-
pecially as the TT task utilization increases. All other methods

"TTTech - Internal"

2010 30 40 50 60 70

Sc
he

du
la

bi
lit

y

2010 30 40 50 60 70 2010 30 40 50 60 2010 30 40 50

20%

40%

60%

80%

100%

2010 30 40 20102010 30

UTT=20%UTT=10% UTT=30% UTT=40% UTT=50% UTT=60% UTT=70%

UETUET

Schedulability
SPoll

Schedulability
AdvPoll

Avg. Runtime
SPoll

Avg. Runtime
AdvPoll

Avg. Runtime
LMminB3LF

A
ve

ra
ge

 R
un

tim
e10sec

1sec

100ms

10ms

1ms

100us

Test 1 inf

Schedulability
Slot-Shifting

Schedulability
B3LF

Avg. Runtime
Slot-Shifting

Avg. Runtime
B3LF

Fig. 6: Schedulability and avg. runtime with 250µs microtick, periods Ti ∈ {5, 10, 20, 40, 80}ms and constrained ET deadlines in [Ci, Ti].

"TTTech - Internal"

2010 30 40 50 60 70

Sc
he

du
la

bi
lit

y

2010 30 40 50 60 70 2010 30 40 50 60 2010 30 40 50

20%

40%

60%

80%

100%

2010 30 40 20102010 30

UTT=20%UTT=10% UTT=30% UTT=40% UTT=50% UTT=60% UTT=70%

UETUET

Schedulability
SPoll

Schedulability
AdvPoll

Avg. Runtime
SPoll

Avg. Runtime
AdvPoll

Avg. Runtime
LMminB3LF

A
ve

ra
ge

 R
un

tim
e10sec

1sec

100ms

10ms

1ms

100us

Test 2 inf

Schedulability
Slot-Shifting

Schedulability
B3LF

Avg. Runtime
Slot-Shifting

Avg. Runtime
B3LF

Fig. 7: Schedulability and avg. runtime with 100µs microtick, periods Ti ∈ {1, 2, 5, 10, 20, 50, 100, 200, 1000}ms and constrained ET deadlines ∈ [Ci, Ti].

"TTTech - Internal"

2010 30 40 50 60 70

Sc
he

du
la

bi
lit

y

2010 30 40 50 60 70 2010 30 40 50 60 2010 30 40 50

20%

40%

60%

80%

100%

2010 30 40 20102010 30

UTT=20%UTT=10% UTT=30% UTT=40% UTT=50% UTT=60% UTT=70%

UETUET

Schedulability
SPoll

Schedulability
AdvPoll

Avg. Runtime
SPoll

Avg. Runtime
AdvPoll

Avg. Runtime
LMminB3LF

A
ve

ra
ge

 R
un

tim
e10sec

1sec

100ms

10ms

1ms

100us

Test 1 sup

Schedulability
Slot-Shifting

Schedulability
B3LF

Avg. Runtime
Slot-Shifting

Avg. Runtime
B3LF

Fig. 8: Schedulability and avg. runtime with 250µs microtick, periods Ti ∈ {5, 10, 20, 40, 80}ms and arbitrary ET deadlines in [Ci, 5 · Ti].

"TTTech - Internal"

2010 30 40 50 60 70

Sc
he

du
la

bi
lit

y

2010 30 40 50 60 70 2010 30 40 50 60 2010 30 40 50

20%

40%

60%

80%

100%

2010 30 40 20102010 30

UTT=20%UTT=10% UTT=30% UTT=40% UTT=50% UTT=60% UTT=70%

UETUET

Schedulability
SPoll

Schedulability
AdvPoll

Avg. Runtime
SPoll

Avg. Runtime
AdvPoll

Avg. Runtime
LMminB3LF

10sec

1sec

100ms

10ms

1ms

Test 2 sup

A
ve

ra
ge

 R
un

tim
e

Schedulability
Slot-Shifting

Schedulability
B3LF

100us

Avg. Runtime
Slot-Shifting

Avg. Runtime
B3LF

Fig. 9: Schedulability and avg. runtime with 100µs microtick, periods Ti ∈ {1, 2, 5, 10, 20, 50, 100, 200, 1000}ms and arbitrary ET deadlines in [Ci, 5·Ti].

fail to reach comparable schedulability except for AdvPoll
when the system utilization is low. For arbitrary deadlines
(Figs. 8 and 9), we achieve a higher average schedulability
rate (left y-axis) than all other methods in almost all cases,
often by a significant amount (especially in highly utilized
systems). In some isolated cases, SPoll is better by 1−2% for
(UTT , UET) = (10%, 20%), (20%, 10%) in Fig. 9. We note
that harmonic periods are common in real-world systems: e.g.,
the AFDX aerospace standard defines periods as powers of 2
multiplied by 1ms between 1−128ms [63]. However, we also
include highly non-harmonic periods leading to a hyperperiod
explosion in Fig. 10b, showing the runtime comparison of

the methods. We also change randomly some periods from
(10ms, 20ms, 40ms) to (10.25ms, 20.75ms, 40.25ms) in use-
cases (UTT , UET) = (10%, 70%), (70%, 10%), (70%, 20%)
from test suite 1 (Fig. 6). The schedulability results are
(12%, 0%, 0%) for Slot-shifting, (0%, 0%, 0%) for SPoll,
(40%, 40%, 20%) for AdvPoll, and (88%, 76%, 92%) for
B3LF, confirm our previous schedulability results.

In terms of runtime (right logarithmic y-axis of Figs. 6, 9),
our method is faster than Slot-Shifting, SPoll, and AdvPoll
in most but not all cases. SPoll is faster when it cannot find
feasible schedules (since the algorithm ends at the first polling
task for which the oversampling leads to infeasibility) but

100 ms

1 sec

10 sec

1 min

10 min

 0 200 400 600 800 1000

A
v
er

ag
e

R
u
n
ti

m
e

Number of TT and ET tasks

Slot-Shifting
SPoll

AdvPoll

B3LF
LMminB3LF

(a) increasing number of tasks

100 ms

1 sec

10 sec
1 min

10 min
1 h

10 h

120 ms 600 ms 4.2 sec 25 sec 2.7 min 46 min

R
u

n
ti

m
e

TT task hyperperiod length

Slot-Shifting
SPoll

AdvPoll

B3LF
LMminB3LF

(b) increasing TT hyperperiod

0

20

40

60

80

100

∆i
1

∆i
2

∆i
3

∆i
4

S
ch

ed
u
la

b
il

it
y
 [

%
]

Deadline range for any ET task τi

Slot-Shifting
SPoll

AdvPoll
B3LF

(c) decreasing event-triggered task laxity

Fig. 10: Complexity and schedulability experiments for different problem dimensions.

cannot compete in terms of schedulability. Similarly, Slot-
Shifting is sometimes faster due to the efficient schedulability
test for ET tasks or when it cannot find a schedule, but it also
cannot compete in terms of schedulability. AdvPoll is only
comparable in runtime with B3LF for poorly utilized systems
where the greedy search for the server period succeeds early.
In cases where classical methods have a comparable schedula-
bility rate to our method, B3LF almost always achieves a faster
average runtime for the schedule generation. The comparison
of B3LF to the LMminB3LF design optimization in terms of
runtime yields a maybe counterintuitive result. If there are
very small and very large periods (test suites 1 & 2), B3LF is
sometimes slower than LMminB3LF, meaning that for some
test cases, computing the TT schedule multiple times and
calculating the ET delays once, as is done in LMminB3LF,
takes less time than calculating the ET delays multiple times
and computing the TT schedule once, as is done in B3LF. For
the latter case, calculating the precise ET delay is more time-
consuming due to the large number of linear pieces needed to
describe the staircase functions, and a more significant timeline
duration needs to be explored to find the precise delays for
highly loaded systems.

Holistic scheduling [18], [19], [41] assumes that ET tasks
have periodic activation (with bounded jitter) and uses a spe-
cific ET schedulability that is not suitable for our more generic
sporadic ET task model. Hence, we cannot directly compare
it to our method. However, we use the ALAP/ASAP-based
heuristic from [18], [19], [41] with the changed simulation-
based schedulability test for sporadic tasks proposed in [24].
We ran the constrained-deadline experiments with test suite
1 and the schedulability of holistic scheduling was roughly
in between SPoll and AdvPoll (c.f. Fig. 6) and much lower
than the schedulability of our method in all cases except
(UTT , UET) = (10%, 40%), (10%, 50%). The avg. runtime
for holistic scheduling was 2404ms compared to 17ms for
our method. We do not show the complete results since, as
described above, the original holistic method cannot be applied
to our more general sporadic model.

In the second set of experiments, we study the runtime
of our approach for increasing number of tasks (Fig. 10a),
(rapidly) increasing hyperperiods (Fig. 10b), and decreasing
laxity (Fig. 10c). We use a test setup with a very small
microtick (10µs) in order to stress our algorithm when gen-
erating the schedule table. In Fig. 10a, we generate 100

constrained-deadline task sets per test case with each having
20% ET and 20% TT task utilization, and periods chosen
from the set {50, 100}ms. We see the effect of increasing
the number of tasks (x-axis) from 8 to 1024 (equal number
of TT and ET tasks) on the runtime (logarithmic y-axis) of
B3LF and LMminB3LF, showing the efficiency of our method
in relation to SPoll and AdvPoll. We see that the runtime
of all methods grows linearly with the number of tasks and
that B3LF and Slot-Shifting have the lowest overall average
runtime out of all methods. In Fig. 10b, we generate 1 implicit
deadline task set per test case with 8 TT and 8 ET tasks,
increasing the hyperperiod of TT tasks (HP) exponentially
from 120ms to 2784600ms (≈ 46min) on a timeline with
a 10µs microtick (logarithmic x-axis). The generation of the
TT schedule dominates all other aspects when the hyperperiod
explodes since all algorithms scale linearly in the number of
time instants until their respective schedule cycles. Note that
while the x-axis shows the TT hyperperiod HP , the schedule
cycle (the size of the static schedule table) is a function of
HP , being either equal to it or a multiple thereof. For SPoll
and AdvPoll, the schedule cycle is the lcm between HP
and the period(s) of the polling task(s), and for B3LF and
LMminB3LF, it may be a multiple of HP (c.f. Alg. 1) upper
bounded by ⌊ LM

ITT ⌋HP . As an example, in our test with a TT
hyperperiod of HP = 46min, the schedule cycle for AdvPoll
and B3LF equals HP , and for SPoll it is ≈ 1.5h. Slot-shifting
reaches our set timeout of 10 hours for HP = 46min since it
is more susceptible to increasing schedule sizes due to testing
all critical slots until HP and the bookkeeping of the reserved
slot list. We note that even for the case with an unrealistically
large schedule cycle of ≈ 46min and an unrealistically small
microtick of 10µs, B3LF manages to compute a schedule
table in 26min, which is quite acceptable for an offline
schedule generation tool. Moreover, we note that in B3LF, the
computation of the maximum burst is independent of HP .
Finally, we study the effect of task laxity on schedulability
for each method. In Fig. 10c, we generate 100 constrained-
deadline task sets, each having 4 TT and 4 ET tasks with
40% and 20% system utilization, respectively. For each ET
task τi ∈ T ET , we choose the deadline randomly in each
quartile of the interval [Ci, Ti] in decreasing order (x-axis), i.e.,
∆k

i = [Ti−k(Ti−Ci)/4, Ti−(k−1)(Ti−Ci)/4], k = 1, ..., 4,
leading to an increasingly smaller laxity. While for ∆1

i , the
schedulability of most methods is at 100%, Slot-Shifting and

TTTech - Internal

8040 120 160 200 240 280

Sc
he

du
la

bi
lit

y

20%

40%

60%

80%

100%

8040

UTT=80%UTT=40% UTT=120% UTT=160% UTT=200% UTT=240% UTT=280%

UETUET

A
ve

ra
ge

 R
un

tim
e10sec

1sec

100ms

10ms

1ms

100us

Schedulability
SPoll

Schedulability
AdvPoll

Avg. Runtime
SPoll

Avg. Runtime
AdvPoll

Avg. Runtime
LMminB3LF

multicore

8040 120 160 200 240 280 8040 120 160 200 240 8040 120 160 200 8040 120 160 8040 120

Schedulability
Slot-Shifting

Schedulability
B3LF

Avg. Runtime
Slot-Shifting

Avg. Runtime
B3LF

Fig. 11: Schedulability and avg. runtime on a 4-core platform with 250µs microtick, periods Ti ∈ {5, 10, 20, 40, 80}ms and constrained ET deadlines.

SPoll have low schedulability as the laxity decreases. AdvPoll
has slightly lower schedulability compared to our method for
∆4

i with 64% vs. 78% schedulability.
The size of the schedule tables depends on the schedule

cycle and the microtick. We computed the average memory
sizes of the generated TT schedules for all 4 test suites from
Sec. IV-A. The schedules produced with B3LF have relatively
small sizes (comparable to the other methods) of 30KB to
500KB for realistic scenarios and 1MB for the unrealistic 10µs
test suite 4, making them suitable for embedded targets.

B. Real-world test case

In the previous section, we have created for test suite 1 a
series of synthetic task sets based on the periods and period
distributions of a real-world automotive system currently on
the road in millions of vehicles. We cannot reveal any sensitive
information or intellectual property due to confidentiality but
note that the application features a multi-SoC multi-core
platform with 6 cores dedicated to critical applications. There
are 120 tasks with periods in the set {5, 10, 20, 40, 80}ms and
a distribution of {9.166%, 26.66%, 12.5%, 19.166%, 32.5%}
and a total utilization of 3.08. In the original application,
all the tasks are defined as TT and are pre-assigned to the
6 dedicated cores. Hence, in this experimental evaluation,
we run the single-core implementation for each core with
the assigned tasks. Since all tasks were initially defined as
TT and there were no ET tasks, we change the type of the
task to ET if the task laxity (i.e., Ti − Ci) is larger than
100 microticks. In total, 73 tasks were converted from TT
to ET. For these ET tasks, we set the priority of a task τi to
p(i) = max(0, 6 − ⌊(Ti − Ci)/100⌋). All tasks with laxity
smaller than or equal to 100 microticks remain TT tasks. All
methods manage to successfully compute schedules for all 6
cores, except for SPoll, which only finds feasible schedules
for 4 cores. The average runtimes are as follows: 0.56ms for
B3LF, 2ms for LMminB3LF, 1.35ms for SPoll, 24.9ms for
AdvPoll, and 6.7ms for Slot-Shifting. The real-world test case
confirms our synthetic benchmark results, with B3LF being
faster than all other methods while having equal or better
schedulability.

C. Multicore test cases and dependencies

We show the applicability of our method to partitioned
multi-core systems using the automotive configuration from
test suite 1 and our simple allocation heuristic from Sec. III-E.

We merge the original 100 input task sets in sets of 4 to create
test cases for a multi-core platform with 4 cores, resulting in 25
task sets per input configuration. We only show the constrained
deadline test cases since the main objective of the evaluation is
to show the applicability of our method, not the effectiveness
of the allocation heuristic. In Fig. 11, we depict, as before,
the schedulability on the left y-axis and the runtime on the
logarithmic y-axis for different (UTT , UET) configurations. In
most cases, we see that B3LF has better schedulability than
all other methods and is almost always faster than the only
comparable method in terms of schedulability (AdvPoll).

Finally, we use the real-world example from Sec. IV-B, with
the same task type change and priority assignment as described
before. However, we assume that tasks are not pre-assigned
to cores and use our simple heuristic detailed in Sec. III-E
to do the assignment with an increasing number of available
cores. With 4 cores, only SPoll fails to produce schedules,
while B3LF, LMminB3LF, AdvPoll, and Slot-Shifting succeed
with the following runtimes: 2.59ms, 17.87ms, 312.49ms, and
55.89ms, respectively. SPoll only manages to find schedules
when we increase the number of cores to 17.

V. CONCLUSION

We have studied the integration of sporadic event-triggered
(ET) tasks with arbitrary deadlines into static time-triggered
(TT) schedules. Our novel method distills a burst limiting
constraint (BLC) for TT tasks that guarantees the schedula-
bility of ET tasks and that can be integrated into any TT
schedule generation algorithm. We also introduced our own TT
schedule generation method that respects the BLC and thereby
fulfills the temporal requirements of both TT and ET tasks.
We have also presented a design optimization technique for
iterative design processes where ET tasks are added/changed
later and an allocation heuristic for applying our method to
partitioned multi-core systems. We have shown through an
extensive series of synthetic and real-world test cases that our
method outperforms state-of-the-art approaches in terms of
schedulability and runtime. The BLC derived with our method
is independent of our proposed LLF-based synthesis algorithm
and represents an independent and generic constraint on TT
slot placement that can be readily integrated into any existing
schedule generation method for time-triggered systems, even
those that include complex multi-rate cause-effect chains and
network communication dependencies.

ACKNOWLEDGMENTS

This Project is under Grant Agreement Preparation by the
Chips-JU for funding in the frame of the Call 2023 activities.

REFERENCES

[1] T. Fleming, S. K. Baruah, and A. Burns, “Improving the schedulability
of mixed criticality cyclic executives via limited task splitting,” in Proc.
RTNS, 2016.

[2] S. K. Baruah and G. Fohler, “Certification-cognizant time-triggered
scheduling of mixed-criticality systems,” in Proc. RTSS, 2011, pp. 3–12.

[3] B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis, “A
comprehensive survey of industry practice in real-time systems,” Real-
Time Systems, vol. 58, no. 3, pp. 358–398, Sep 2022.

[4] M. Lukasiewycz, R. Schneider, D. Goswami, and S. Chakraborty, “Mod-
ular scheduling of distributed heterogeneous time-triggered automotive
systems,” in Proc. ASP-DAC, 2012.

[5] F. Sagstetter, S. Andalam, P. Waszecki, M. Lukasiewycz, H. Stähle,
S. Chakraborty, and A. Knoll, “Schedule integration framework for time-
triggered automotive architectures,” in Proc. DAC, 2014.

[6] R. Ernst, S. Kuntz, S. Quinton, and M. Simons, “The Logical Execution
Time Paradigm: New Perspectives for Multicore Systems (Dagstuhl
Seminar 18092),” Dagstuhl Reports, vol. 8, no. 2, pp. 122–149, 2018.

[7] G. Niedrist, “Deterministic architecture and middleware for domain
control units and simplified integration process applied to ADAS,” in
Fahrerassistenzsysteme 2016. Springer Fachmedien Wiesbaden, 2018.

[8] T. Fleming and A. Burns, “Investigating mixed criticality cyclic execu-
tive schedule generation,” in Proc. WMC, 2015.

[9] S. D. McLean, E. A. Juul Hansen, P. Pop, and S. S. Craciunas,
“Configuring ADAS platforms for automotive applications using meta-
heuristics,” Frontiers in Robotics and AI, vol. 8, p. 353, 2022.

[10] P. Karachatzis, J. Ruh, and S. S. Craciunas, “An evaluation of time-
triggered scheduling in the linux kernel,” in Proc. RTNS. ACM, 2023.

[11] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “Synthe-
sizing job-level dependencies for automotive multi-rate effect chains,”
in Proc. RTCSA, 2016.

[12] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “End-
to-end timing analysis of cause-effect chains in automotive embedded
systems,” Journal of Systems Architecture, vol. 80, 2017.

[13] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga, “Time-triggered
mixed-critical scheduler on single and multi-processor platforms,” in
Proc. HPCC, 2015, pp. 684–687.

[14] J. Real, S. Sáez, and A. Crespo, “A hierarchical architecture for time-
and event-triggered real-time systems,” J. Syst. Archit., vol. 101, 2019.

[15] J. Xu and D. L. Parnas, “Priority scheduling versus pre-run-time
scheduling,” Real-Time Syst., vol. 18, no. 1, p. 7–23, 2000.

[16] C. D. Locke, “Software architecture for hard real-time applications:
Cyclic executives vs. fixed priority executives,” Real-Time Syst., vol. 4,
no. 1, p. 37–53, 1992.

[17] A. Minaeva and Z. Hanzálek, “Survey on periodic scheduling for time-
triggered hard real-time systems,” ACM Comput. Surv., vol. 54, no. 1,
2021.

[18] T. Pop, P. Eles, and Z. Peng, “Holistic scheduling and analysis of mixed
time/event-triggered distributed embedded systems,” in Proc. CODES.
ACM, 2002.

[19] T. Pop, P. Eles, and Z. Peng, “Schedulability analysis for distributed
heterogeneous time/event triggered real-time systems,” in Proc. ECRTS,
2003.

[20] L. Almeida and P. Pedreiras, “Scheduling within temporal partitions:
Response-time analysis and server design,” in Proc. EMSOFT, 2004.

[21] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in Proc. RTSS. IEEE, 2003.

[22] I. Shin and I. Lee, “Compositional real-time scheduling framework with
periodic model,” ACM Trans. Embed. Comput. Syst., vol. 7, no. 3, 2008.

[23] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H. Klein, “Analysis
of hierarchical fixed-priority scheduling,” in Proc. ECRTS, 2002.

[24] C. Meroni, S. S. Craciunas, A. Finzi, and P. Pop, “Mapping and
integration of event- and time-triggered real-time tasks on partitioned
multi-core systems,” in Proc. ETFA. IEEE, 2023.

[25] P. Muoka, D. Onwuchekwa, and R. Obermaisser, “Adaptive scheduling
for time-triggered network-on-chip-based multi-core architecture using
genetic algorithm,” Electronics, vol. 11, no. 1, 2022.

[26] C. Deutschbein, T. Fleming, A. Burns, and S. K. Baruah, “Multi-
core cyclic executives for safety-critical systems,” Science of Computer
Programming, vol. 172, pp. 102–116, 2019.

[27] A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst, “Commu-
nication Centric Design in Complex Automotive Embedded Systems,”
in Proc. ECRTS, 2017.

[28] S. D. McLean, S. S. Craciunas, E. A. Juul Hansen, and P. Pop,
“Mapping and scheduling automotive applications on ADAS platforms
using metaheuristics,” in Proc. ETFA. IEEE, 2020.

[29] H. Kopetz, “Sparse time versus dense time in distributed real-time
systems,” in Proc. ICDCS, 1992.

[30] D. Isović and G. Fohler, “Handling mixed sets of tasks in combined
offline and online scheduled real-time systems,” Real-Time Syst., vol. 43,
no. 3, 2009.

[31] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez, “Power-
aware scheduling for periodic real-time tasks,” IEEE Transactions on
Computers, vol. 53, no. 5, pp. 584–600, 2004.

[32] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Springer-Verlag, 2001.

[33] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in Proc. ISCAS, vol. 4, 2000.

[34] D. V. R. Sudhakar, K. Albers, and F. Slomka, “Generalized and scalable
offset-based response time analysis of fixed priority systems,” Journal
of Systems Architecture, vol. 112, p. 101856, 2021.

[35] M. Moy and K. Altisen, “Arrival curves for real-time calculus: the
causality problem and its solutions,” in Proc. TACAS, 2010.

[36] S. Chakraborty, S. Künzli, and L. Thiele, “A general framework for
analysing system properties in platform-based embedded system de-
signs,” in Proc. DATE, 2003.

[37] Y. Tang, Y. Jiang, X. Jiang, and N. Guan, “Pay-burst-only-once in real-
time calculus,” in Proc. RTCSA, 2019.

[38] E. Wandeler and L. Thiele, “Real-time interfaces for interface-based
design of real-time systems with fixed priority scheduling,” in Proc.
EMSOFT, 2005.

[39] A. Bouillard, M. Boyer, and E. Le Corronc, Deterministic Network
Calculus – From theory to practical implementation. Wiley, 2018.

[40] M. Boyer, P. Roux, H. Daigmorte, and D. Puechmaille, “A residual
service curve of rate-latency server used by sporadic flows computable
in quadratic time for network calculus,” in Proc. ECRTS, 2021.

[41] T. Pop, “Scheduling and optimisation of heterogeneous time/event-
triggered distributed embedded systems,” Ph.D. dissertation, Linkóping
University, 2003.

[42] A. Zabos, “Temporal partitioning of flexible real-time systems,” Ph.D.
dissertation, University of York, 2011.

[43] G. Fohler, “Joint scheduling of distributed complex periodic and hard
aperiodic tasks in statically scheduled systems,” in Proc. RTSS, 1995.

[44] D. Isović and G. Fohler, “Efficient scheduling of sporadic, aperiodic,
and periodic tasks with complex constraints,” in Proc. RTSS, 2000.

[45] D. Isović and G. Fohler, “Handling sporadic tasks in off-line scheduled
distributed real-time systems,” in Proc. ECRTS, 1999, pp. 60–67.

[46] P. Kumar and L. Thiele, “Cool shapers: Shaping real-time tasks for
improved thermal guarantees,” in Proc. DAC, 2011.

[47] S. Thangamuthu, N. Concer, P. J. L. Cuijpers, and J. J. Lukkien,
“Analysis of ethernet-switch traffic shapers for in-vehicle networking
applications,” in Proc. DATE, 2015.

[48] J. Imtiaz, J. Jasperneite, and L. Han, “A performance study of ethernet
audio video bridging (AVB) for industrial real-time communication,” in
Proc. ETFA. IEEE, 2009.

[49] A. Finzi, A. Mifdaoui, F. Frances, and E. Lochin, “Incorporating
TSN/BLS in AFDX for mixed-criticality applications: Model and timing
analysis,” in Proc. WFCS, 2018.

[50] A. Finzi and A. Mifdaoui, “Worst-case timing analysis of AFDX
networks with multiple TSN/BLS shapers,” IEEE Access, vol. 8, 2020.

[51] F.-J. Gotz, “Traffic Shaper for Control Data Traf-
fic (CDT),” IEEE 802 AVB Meeting, available at
https://www.ieee802.org/1/files/public/docs2012/new-goetz-
CtrDataScheduler-0712-v1.pdf, Accessed on 19.09.2023.

[52] S. S. Craciunas, R. Serna Oliver, M. Chmelik, and W. Steiner, “Schedul-
ing real-time communication in IEEE 802.1Qbv Time Sensitive Net-
works,” in Proc. RTNS. ACM, 2016.

[53] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, 1973.

[54] J. Leung, “A new algorithm for scheduling periodic, real-time tasks,”
Algorithmica, vol. 4, no. 1, pp. 209–219, 1989.

[55] S. S. Craciunas, R. Serna Oliver, and V. Ecker, “Optimal static schedul-
ing of real-time tasks on distributed time-triggered networked systems,”
in Proc. ETFA. IEEE, 2014.

[56] J. Hildebrandt, F. Golatowski, and D. Timmermann, “Scheduling co-
processor for enhanced least-laxity-first scheduling in hard real-time
systems,” in Proc. ECRTS, 1999.

[57] B. B. Brandenburg and M. Gül, “Global scheduling not required: Simple,
near-optimal multiprocessor real-time scheduling with semi-partitioned
reservations,” in Proc. RTSS, 2016, pp. 99–110.

[58] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Algorithms and
complexity concerning the preemptive scheduling of periodic, real-time
tasks on one processor,” Real-Time Syst., vol. 2, no. 4, 1990.

[59] P. Emberson, R. Stafford, and R. Davis, “Techniques for the synthesis
of multiprocessor tasksets,” in Proc. WATERS, 2010.

[60] P. Emberson, R. Stafford, and R. Davis, “A taskset generator
for experiments with real-time task sets,” available at
https://github.com/jlelli/taskgen, Accessed on 19.09.2023.

[61] S. Tobuschat, R. Ernst, A. Hamann, and D. Ziegenbein, “System-level
timing feasibility test for cyber-physical automotive systems,” in Proc.
SIES, 2016.

[62] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive
benchmarks for free,” in Proc. WATERS, 2015.

[63] M. Li, M. Lauer, G. Zhu, and Y. Savaria, “Determinism enhancement of
AFDX networks via frame insertion and sub-virtual link aggregation,”
IEEE Transactions on Industrial Informatics, vol. 10, no. 3, pp. 1684–
1695, 2014.

