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ABSTRACT
TheGNU/Linux operating system (OS) is becomingmore commonly

used in real-time systems and has been modified with specific up-

dates to provide faster and bounded response times as well as

with fixed- and dynamic-priority real-time scheduling mechanisms.

While the EDF-based scheduler ensures deadlines and temporal

isolation for real-time tasks, it may not provide the level of deter-

minism needed for modern applications that also have to consider

complex jitter and multi-rate task dependencies.

In this paper, we propose, implement, and evaluate an open-

source, kernel-level time-triggered scheduling approach for Linux,

examining the level of determinism achievable in terms of task

execution and end-to-end latencies. We show that time-triggered

scheduling in the Linux kernel achieves reduced latency and jitter

for real-time applications when compared to the existing scheduling

policies and user-space time-triggered implementations. Addition-

ally, in terms of end-to-end communication latencies for distributed

real-time applications, we compare a software-based IEEE 802.1Qvb

time-aware gating implementation for time-sensitive networking

(TSN) in which the time-triggered application schedule can be

aligned to the network schedule to the standard Linux networking

subsystem.

CCS CONCEPTS
• Computer systems organization→ Dependable and fault-
tolerant systems and networks.

KEYWORDS
Time-triggered scheduling, Linux kernel, Time-sensitive Networks.

ACM Reference Format:
Paraskevas Karachatzis, Jan Ruh, and Silviu S. Craciunas. 2023. An Eval-

uation of Time-triggered Scheduling in the Linux Kernel. In The 31st In-
ternational Conference on Real-Time Networks and Systems (RTNS 2023),
June 7–8, 2023, Dortmund, Germany. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3575757.3593660

ACKNOWLEDGMENTS
This paper is supported by European Union’s Horizon Research and

Innovation Programme under Grant Agreement number 101076754,

Project AITHENA.

RTNS 2023, June 7–8, 2023, Dortmund, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in The 31st International
Conference on Real-Time Networks and Systems (RTNS 2023), June 7–8, 2023, Dortmund,
Germany, https://doi.org/10.1145/3575757.3593660.

1 INTRODUCTION
The GNU/Linux operating systems (OS) were not envisioned and

designed for use in real-time application domains but are used as

general-purpose OS capable of running on both embedded targets as

well as desktop and server systems [52]. However, in many domains

such as industrial control, Internet of Things (IoT), and automo-

tive systems, GNU/Linux has become an attractive candidate for

use in (soft) real-time applications due to the emergence of mixed-

criticality workloads [35], the potential for cost reduction through

COTS usage [50], the attractiveness of open-source licensing mod-

els, and the need for extensive library support and well-established

programming environments [50]. This evolution manifests itself in

the increased interest in academia and industry to comprehend and

enhance the Linux kernel’s real-time capabilities [19]. Nowadays,

the Linux community has extended the kernel to provide faster and

bounded response times (through the PREEMPT_RT patch) [50]

and introduced fixed- and dynamic-priority real-time scheduling

in the form of the SCHED_FIFO and SCHED_DEADLINE sched-

ulers. SCHED_DEADLINE [39] implements Constant-Bandwidth

Server (CBS) scheduling [2] that is a variant of Earliest-Deadline

First (EDF) also featuring temporal isolation via CPU reservations.

A survey of real-time enhancements in the Linux Kernel can be

found in [60], and a discussion on the remaining challenges within

the throughput-oriented design of Linux can be found in [43].

While the EDF-based real-time scheduler SCHED_DEADLINE

will ensure temporal isolation and deadlines of real-time tasks, it

may not offer the strict determinism needed in modern applications

that goes beyond meeting deadlines and also needs to consider

more complex timing dependencies. For example, in the automo-

tive domain, there has been a shift towards a more centralized

functionality featuring scalable and flexible integrated hardware

platforms (c.f. [48]) that enables complex real-time requirements

of, e.g., Advanced Driver-Assistance Systems (ADAS)/Autonomous

Driving (AD) [22, 44]. In particular, it is challenging to support the

non-trivial jitter requirements and multi-rate dependency chains

necessary in ADAS/AD functions [6, 7] using EDF scheduling. Such

applications benefit from a more predictable, time-triggered (TT)

execution [44, 56]. Time-triggered scheduling has proven superior

in terms of determinism, stability, predictability, and compositional-

ity [21, 41, 45, 51, 61, 62], and thus has been successfully deployed

in real-world applications. For example, MotionWise [57, 58] is a

middleware layer running on top of GNU/Linux and proprietary

(real-time) OSs that enables time-triggered scheduling independent

of the underlying OS scheduling [45] by implementing user-space

time-triggered scheduling. However, user-space scheduling exhibits

higher latencies with more variations (c.f. Sect. 3.3).

Deterministic task execution is a necessary but insufficient con-

dition to fulfill modern applications’ real-time requirements. Most

https://doi.org/10.1145/3575757.3593660
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modern applications communicate with each other, thus also requir-

ing determinism on the networking part [5] and synchronization

between the application execution and the message transmission

over the network. However, the Linux kernel’s networking subsys-

tem has been designed with throughput rather than determinism

in mind. Hence, we also need to explore how to add real-time capa-

bilities to the communication subsystems. Recently, Time-Sensitive

Networking (TSN) [29] has introduced a set of standardized mech-

anisms and protocols enhancing IEEE 802.1Q [27] bridges with

real-time capabilities such as clock synchronization (IEEE 802.1AS-

rev [30]) and time-aware shapers (IEEE 8021.Qbv [28]) enabling a

global time-triggered communication schedule [18, 53, 59]. On the

end-system nodes, support for real-time communication via TSN

has been added, e.g., in the Time-Aware Priority Shaper (TAPRIO)

project [32]. TAPRIO adds the IEEE 802.1Qbv time-aware shap-

ing to the Linux communication subsystem implementing egress

queues that can be configured as a timed sequence of open or closed

gate states, enabling or disabling frame transmission based on a

schedule defined in so-called Gate-Control Lists [38].

In this paper, we implement and evaluate an open-source time-

triggered scheduling and communication approach for Linux, study-

ing the degree of determinism, both in task execution and communi-

cation latencies, that can be achieved using this paradigm. We show

that a time-triggered scheduler (SCHED_TT) fits seamlessly into

the Linux kernel scheduling hierarchy, but certain aspects related

to task activation, thread spawning, and synchronization need to

be done carefully. Furthermore, we investigate the benefits of the

implementation concerning its reduced variance in execution and

communication latencies for real-time applications when compared

to existing scheduling policies and a user-space time-triggered im-

plementation. For the communication latencies, we compare the

TAPRIO queueing discipline (qdisc) (software-based IEEE 802.1Qvb

time-aware gating) [32] against the standard Linux networking

subsystem. The main contributions of our paper are the implemen-

tation of the open-source kernel-level SCHED_TT scheduler and an

extensive evaluation showing the benefits and trade-offs of adding

the time-triggered paradigm to the Linux kernel.

We survey related works on real-time Linux in Section 2, fol-

lowed by a description of our time-triggered scheduling implemen-

tation in Section 3. We then present an extensive experimental

evaluation in Section 4 and conclude the paper in Section 5.

2 RELATEDWORK
Linux has been used in a series of real-time, from robotics applica-

tions and industrial systems, to fog and edge computing [25, 39, 52].

One of the first serious efforts to enhance the real-time behavior

of Linux was the PREEMPT_RT patch [50]. The SCHED_RT policy

implements fixed-priority scheduling via 99 priority levels for real-

time tasks. However, fixed priority scheduling, as is implemented

now, does not offer protection (in the form of temporal isolation)

against starvation when a high-priority task exceeds its worst-case

execution time (WCET) assumption. In order to alleviate this prob-

lem and introduce the concept of deadlines to the Linux kernel, the

SCHED_DEADLINE scheduler was introduced, implementing an

EDF-variant with temporal isolation and slack reclaiming. A survey

of real-time enhancements in the Linux kernel can be found in [60].

Additionally, many projects have implemented Linux variants with

some type of real-time support [20, 23, 25, 42]. The LInux Testbed

for MUltiprocessor Scheduling in Real-Time Systems (LITMUS
𝑅𝑇

)

project [13] is an experimental extension to the Linux kernel that

provides abstractions and interfaces that ease the integration of

real-time scheduling and synchronization algorithms for multipro-

cessor systems. Currently, LITMUS
𝑅𝑇

implements the partitioned,

global, and clustered EDF (PSN-EDF, GSN-EDF, C-EDF), partitioned

Fixed-Priority (P-FP), Partitioned Reservation-Based Scheduling

(P-RES), and pfair (𝑃𝐷2
) algorithms. Additionally, LITMUS

𝑅𝑇
also

supports table-driven scheduling based on ARINC 653 partitions

where each scheduling slot in the static schedule table can reference

a set of processes that are then dispatched dynamically within the

slot. LITMUS
𝑅𝑇

was compared to vanilla Linux and Linux with the

PREEMPT_RT in terms of scheduling latency in [15].

In the automotive domain, a typical OS that is used is AUTOSAR,

which has a fixed-priority dispatcher with the option to put offsets

on runnables which can be seen as a restricted version of table-

driven scheduling [26]. Alternatively, to achieve more deterministic

behavior, time-triggered scheduling has been introduced as a user

space feature via the MotionWise solution [57, 58]. MotionWise

emulates a time-triggered execution via standard POSIX system

calls and forces the execution of the tasks according to the schedule

table. While user-space scheduling is faster to develop, easier to de-

bug, and more portable (e.g., to other POSIX systems), it has higher

latencies and more runtime variance that may degrade the desired

strict determinism. Implementing the scheduler within the kernel

has the advantage of removing traps and direct control when con-

text switching, reduced latencies due to fewer system calls crossing

the user-space kernel-space boundary, and access to the physical

memory (and, in general, other hardware resources). On the other

hand, there are some disadvantages to a kernel implementation

primarily related to stability (bugs may crash the kernel), main-

tenance (dependence on Linux scheduler classes), and portability

(new kernels require modifications or even implementation from

scratch and merging changes upstream).

Some studies have investigated the degree of determinism re-

garding real-time latencies for Linux. Amongst these, [4] measured

latencies in the Linux kernel via micro-benchmarks, showing that

between the timer resolution and non-preemptable sections, the

timer resolution latency is dominant. Additionally, in [19], the au-

thors study the scheduling latency, including all possible synchro-

nization flows in the PREEMPT_RT Linux Kernel, introduce a trac-

ing tool for kernel events, and show that preemption and sections

with disabled interrupts add most to the scheduling latency.

In terms of determinism beyond the temporal isolation offered by

SCHED_DEADLINE, most works focus either on spatial isolation

or reducing cache interference. While containers only offer spatial

isolation, there have been efforts to introduce real-time containers

through the implementation of hierarchical scheduling [1]. The

spatial isolation property offered by containers is orthogonal to

the desired temporal properties offered by time-triggered schedul-

ing. Moreover, cache interference reduction (either via software or

hardware support) [16, 36] is also orthogonal to our problem since

it serves to reduce the pessimism of the WCET bound used in the

generation of the offline schedule tables.
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Figure 1: The Linux kernel’s scheduling structure with the
new TT scheduling class.

In terms of communication latencies, some studies [14, 24] inves-

tigate the applicability of the Linux kernel’s communication stack

(either unmodified or via open-source EtherCAT alternatives) to

real-time systems. Time-Sensitive Networking (TSN) is a standard-

ized alternative for real-time communication in some domains like

industrial automation and automotive. In GNU/Linux, the TAPRIO

project adds support for the timed-gate mechanism defined in IEEE

802.1Qbv [28] within the communication subsystem. The work

in [38] investigates TAPRIO performance and latency in different

re-routing scenarios. We also use TAPRIO and study its ability to

improve communication latencies and enable an alignment between

the time-triggered schedule of the sender and receiver applications

with the schedule of the communication between them.

3 LINUX TT SCHEDULER IMPLEMENTATION
The Linux kernel recognizes real-time and regular (non-real-time)

tasks, where the goal for regular tasks is to improve throughput/-

fairness, and the goal for real-time tasks is to improve latency

and maintain deadlines. Since Linux kernel v2.6.23, the scheduling

subsystem of the Linux kernel has been revamped to be easily ex-

tendable with new and custom scheduling classes and policies [39].

We will now briefly describe the Linux kernel’s scheduling classes

for regular and real-time tasks to then proceed with the details of

our new time-triggered scheduler class implementation.

3.1 Linux Kernel Scheduling Policies
The Linux Kernel provides three scheduling classes and five sched-

ulers, organized in a hierarchy as depicted in Fig. 1. All sched-

ulers are called in a well-defined order: (1) stop_sched (a pseudo-

scheduler used for certain kernel threads), (2) SCHED_DEADLINE

(the CBS scheduler), (3) the RT scheduler (SCHED_FIFO and

SCHED_RR which are fixed-priority schedulers), (4) the CFS com-

pletely fair scheduler, (5) the IDLE scheduler [19]. In addition, our

new TT scheduling class (depicted in red) is added to the scheduling

hierarchy with a higher priority than the deadline CBS scheduler.

Each time the scheduler gets invoked, the highest-priority schedul-

ing class containing ready tasks is called. If there are no ready tasks

in any of the scheduling classes, the special IDLE TASK scheduler

returns an idle thread that is always ready to execute.

3.1.1 Completely Fair Scheduler (CFS). The completely fair sched-

uler (CFS) has been the standard scheduler for desktop tasks since

its introduction to the Linux kernel v2.6.23. CFS implements the

weighted fair queuing policy [49] but also provides some prioriti-

zation via the nice value which is essentially a priority field. CFS

attempts to emulate the fairness of generalized processor sharing

(an ideal policy in which the time is infinitely divisible) through

the concept of “virtual runtime”. For more information on CFS we

refer the reader to [17, p.308ff].

3.1.2 Fixed Priority Scheduler (FiFo/RR). The Linux kernel imple-

ments a POSIX-compliant fixed-priority real-time scheduler (RT)

with 99 priority levels which executes tasks in order of decreasing

priority [15]. The RT scheduler has two different policies when two

or more tasks have the same priorities. SCHED_FIFO selects equal-

priority tasks according to their enqueuing order, while SCHED_RR

implements a round-robin policy. With SCHED_FIFO, there is no

maximum time slice used to preempt a running task; hence, an

executing task will only be preempted by an incoming I/O request,

the arrival of a task with higher priority, or if it voluntarily calls the

yield function. SCHED_RR has a higher priority than SCHED_FIFO

and imposes a maximum quantum for task execution, resulting in

equal (highest) priority tasks being able to preempt each other.

The RT scheduler has priority over the CFS scheduler, i.e., tasks

assigned to this scheduling class will take precedence over tasks

assigned to the CFS class, and can be used to implement, e.g., rate-

monotonic (RM) and deadline-monotonic (DM) policies [54]. Even

though the RT scheduler can execute tasks such that they finish

before their deadlines, if the appropriate schedulability tests hold,

there are certain trade-offs comparing to, e.g., Earliest-Deadline

First (EDF) [10, 12]. Primarily, fixed-priority schedulers do not

provide temporal isolation amongst tasks resulting in starvation of

all real-time tasks if, for e.g., a task is set to the highest priority and

misbehaves in that it does not relinquish control over the CPU [52].

Moreover, the priority inheritance implementation may result in

some deadline misses under certain conditions.

3.1.3 Deadline Scheduler (DL). The Deadline scheduler introduced
with Linux kernel v4.13 is based on the Constant-Bandwidth Server

(CBS) [2, 3] algorithm, which is an extension of EDF supporting tem-

poral isolation (via resource reservations) and providing improved

response times for aperiodic tasks. Like other server mechanisms, a

CBS is characterized by a period and a budget but also has a dynamic

deadline that is recomputed according to a set of rules (c.f. [3] for

an in-depth description). If periodic tasks are encapsulated within

their own CBS, a misbehaving task will not influence the temporal

guarantees of any other real-time tasks. Moreover, because CBS is

work conserving, overflows from real-time tasks can be mitigated

by using slack made available by other tasks finishing earlier than

their WCET assumption. SCHED_DEADLINE has higher priority

than the RT scheduler in the Linux scheduling hierarchy.

While the CBS approach is superior to the RT policy due to

the temporal isolation property, it still cannot easily handle the

determinism required in some modern complex applications, e.g.,

regarding execution jitter and multi-rate cause-effect chains. This

is mainly due to allowing jitter in the runtime execution which may

result in breaking individual job-level dependencies. Although it

has certain downsides (like being inflexible), time-triggered sched-

uling has advantages for such types of applications. Time-triggered

scheduling does not allow any variance at runtime, and hence, it

will not break any job-level dependencies at runtime [61].
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3.2 Time-Triggered Scheduler (TT)
Time-triggered scheduling has multiple advantages for highly criti-

cal systems [21, 40, 41, 45, 51, 61, 62]:

• Temporal isolation: it supports correct-by-design approaches with
strict temporal isolation between tasks,

• Complex timing requirements: it is able to satisfy complex con-

straints like the cause-effect chains from ADAS systems [44] as

well as different types of jitter requirements,

• Schedulability: it supports higher system utilization and has a

higher solution space, especially for complex task sets, compared

to e.g. fixed-priority scheduling (c.f. Sec.3.2 of [62]).

• Determinism: it features increased stability and testability, and

TT systems do not have unwanted run-time effects making the

system behavior easier to analyze,

• Synchronization to communication: it is easy to achieve stable real-
time behavior of cause-effect chains across the network domain,

• Predictability: many system properties become predictable, e.g.,

locks and task preemption,

• Compositionality: it supports compositional design and incre-

mental scheduling, making system integration of SWCs from

different suppliers easier.

A major downside of time-triggered scheduling is the lack of

flexibility to adapt to runtime changes. Moreover, creating time-

triggered schedules based on WCET estimates can lead to resource

overprovisioning since the upper bound on the WCET is usually

overly pessimistic. While the WCET pessimism is also a problem

for any scheduling algorithm that offers design-time guarantees,

in TT systems it can lead to a low resource utilization. Typically

resource utilization is improved by allowing lower priority tasks

to reclaim the unused time in TT slots (like in our approach) or by

using average execution time estimates and employ more flexibility

through methods like slot-shifting [33].

3.2.1 SCHED_TT Implementation. We have developed an open-

source
1
time-triggered Linux kernel scheduler to enable executing

tasks according to a statically-defined schedule table (under kernel

version 5.9.1 with PREEMPT_RT). We added the TT scheduler to

the Linux kernel’s scheduler hierarchy with a higher priority than

the deadline scheduler (c.f. Fig. 1) to ensure that no other task can

block TT tasks as they execute based on the cyclic offline schedule.

In the idle slots of the static schedule or when a TT task has finished

earlier than its provisioned slot, tasks belonging to other scheduling

classes will execute.

The user can specify a static schedule table per core (partitioned

approach) that the respective core repeats every cylce or hyper-

period. Internally, we represent the schedule table by a linked

list, so picking the next task to run has complexity O(1). Further-

more, we added clock synchronization to the scheduler such that

there is a global time reference for distributed systems that can

enforce synchronized task execution and communication across

hosts. The TT scheduler’s timers run based on the POSIX clock

CLOCK_MONOTONIC to avoid unexpected time jumps when the

system synchronizes to an external clock source (e.g., network

time). Synchronization to an external clock is done via one or more

1
Will be made available at https://github.com/tttech-group
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Figure 2: Example TT schedule with activation and deadline
flags for slots.

dedicated synchronization slots in the TT schedule, which are re-

served for state correction. During these synchronization slots, the

scheduler adjusts its alignment to the external clock by either en-

larging or reducing the size of the synchronization slot within its

reserved bounds. Thus, the schedule can be aligned with an exter-

nal clock source without negatively influencing the execution of

critical tasks. Moreover, there is a trade-off when selecting how

many synchronization slots to use and where to place them; the

more synchronization slots there are, the more accurate and faster

the synchronization becomes at the expense of solution space for

fitting TT tasks in the static schedule table.

The static schedule table (c.f. Fig. 2 for an example) is created

offline via heuristics or exact methods (e.g. [46]). When creating

the schedule, the system designer defines a macrotick 𝑚𝑡 (also

sometimes referred to as slot length), which captures the granularity
of the schedule slots within the table [34]. A static schedule maps

tasks to time slots, selecting one (or no) task to run in each interval.

The schedule has a hyperperiod, after which the schedule repeats.

Each slot in the schedule table has an additional flag that defines

whether it is an activation (A) and/or deadline (D) slot (c.f. Fig. 2).

If a slot is marked as an activation slot, the corresponding task is

released at the beginning of the slot. The definition of activation

slots prevents tasks that finish execution before their WCET to

execute twice per period. Conversely, if a slot ismarked as a deadline

slot, the scheduler checks if the task has finished execution before

the end of the respective slot.

The time-triggered scheduler uses high-resolution timers to start

and stop tasks. The scheduling subsystem in Linux provides several

standard function APIs for implementing any new scheduler. One

of these functions is enqueue_task(), which adds a task to the

standard ready-to-pick list when it is ready, i.e., released via the

corresponding schedule slot in the schedule table. A task may not

be ready at the start of its activation slot, but enqeue_task() will

add it to the next list if it becomes ready at any time within the slot

and mark the core for rescheduling. As a result, lower-priority back-

ground tasks cannot consume execution time from TT tasks that

may wake up later in their slots (e.g., due to blocking semaphores).

When a reschedule event is triggered, either due to the beginning

of a slot in the TT schedule or a TT task becoming ready within

its slot, a timer interrupt is set for the end of the current time slot.

The activation of the timer interrupt marks the end of a slot so that

the TT scheduler proceeds with the next time slot.

Furthermore, the timer interrupt indicates if a task has exceeded

its deadline, given that the current slot is markedwith the (D)eadline

https://github.com/tttech-group
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flag. If the task currently running finishes execution (i.e., it is no

longer in the RUNNING or READY state) before the end of the

slot, the function dequeue_task() will be called canceling any

active timers, removing the task from the ready-to-pick list and

marking the core for rescheduling. In this way, any lower-priority

background tasks may reuse leftover time from a TT slot. As usual

in the Linux scheduling subsystem, we note that the scheduler timer

does not perform the context switch but only signals that a context

switch is pending. Instead, the Linux kernel performs the context

switch when there is an explicit call to the schedule() function or

when exiting an interrupt service routine. Moreover, we can request

rescheduling by programming a timer interrupt. For example, the

deadline scheduler uses this to preempt tasks that have passed their

deadlines. We also use this method in the time-triggered class since

the execution of tasks is driven by time and not events. When such

a timer interrupt happens, we can immediately reschedule and keep

the latency low. Finally, we emphasize that the reschedule function

does not interfere with the static schedule table. However, it allows

tasks of lower priority scheduler to exploit unused time from TT

tasks.

When rescheduling, the schedule() function calls the associ-

ated pick_next_task() implementation for each scheduling class

in order of their priorities to get the next task to execute. If there is

no ready task in the list, the schedule() picks the next scheduling

class in the scheduler hierarchy until pick_next_task() returns
a ready task or the idle task. Hence, if the TT pick_next_task()
returns without a ready task, e.g., because the task completed execu-

tion early, tasks from other scheduling classes utilize the remaining

time slot.

Finally, we note that several functions of the Linux ker-

nel scheduler API do not apply to SCHED_TT and have not

been implemented or return zero. For example, balance() and

migrate_task_rq() are not used by the time-triggered scheduler

at the moment since each task is pinned to a specific core (parti-

tioned approach) to eliminate migration overhead. However, in a

semi-partitioned approach [9] that we leave for future work, these

functions may be needed.

3.2.2 Time-Triggered Tasks. Real-time tasks require wrapper code

to either enforce a periodic execution, prevent starvation, or adapt

to the underlying scheduler [8]. Similarly, for tasks to run under the

SCHED_TT policy, they must follow a specific structure. In Alg. 1,

we show the pseudocode implementation of a TT task using the

code from [8] as a template but modifying it as follows. Firstly, the

init() function performs optional initialization steps, e.g., mem-

ory allocation, setting up sockets, or initializing variables. We note

that at this point, the task is running with the inherited parent

priority. Once initialization has completed, the TT task must call

set_tt_sched() to switch the scheduling policy to SCHED_TT.

The TT task wrapper then enters a loop and calls sched_yield() to
wait for SCHED_TT to activate a job in the next reserved activation

slot of the static schedule table. After the call to sched_yield(),
we place the real-time payload of the task. At the task’s next acti-

vation slot, SCHED_TT resets the activation flag, sched_yield()
returns, and the payload of the task starts execution. When a TT

job completes, it yields by calling sched_yield() and waits for

its next activation slot. If a TT job fails to yield until the end of

its (D)eadline slot, SCHED_TT preempts the task and records the

deadline miss. At the moment, we apply a recovery policy for tasks

that missed their deadline so that they resume their execution with

their next activation slot. However, other strategies are possible and

easy to configure. For example, an affected task may be restarted

so that it is aligned again at the next activation slot, or it can be

terminated if it is considered unsafe to resume execution.

Finally, unlike wrappers for periodic tasks scheduled using

SCHED_RT [8], we do not need to keep track of user space timers to

enforce periodic execution, since SCHED_TT inherently dispatches

jobs periodically as part of the logic executed in activation and dead-

line slots associated with the TT tasks. Hence, the responsibility

for periodic task execution is shifted from user space to the ker-

nel scheduler. We also note that the wrapper code is not generally

necessary for TT tasks to run in their reserved slots and to ensure

temporal isolation. Any task can be configured as a TT task, and

it will be executed in its reserved time slots. However, in this case,

SCHED_TT cannot take into account the activation and deadline

slots so that it cannot guarantee deadlines or periodic activation.

Algorithm 1 TT task featuring wrapper code

1: procedure main
2: init()
3: set_tt_sched()
4: while true do
5: sched_yield()
6: 𝑃𝐴𝑌𝐿𝑂𝐴𝐷

3.2.3 TT Task Pools. Note that forking TT tasks is problematic,

as it requires child processes to share the existing time slots with

their parent. We can account for this during schedule generation

and refer to the resulting special time slot as a TT pool that inter-

nally is represented by a tgroup (in reference to cgroups in Linux

containers). Tasks co-located in the same TT pool are scheduled

inside the pool according to a pool-level scheduling policy. For this

early experimental version of TT pools, we implemented a FIFO ap-

proach for scheduling tasks within the pool, but other policies, such

as (weighted) round-robin or priority-based, can be easily added.

We want to point out, that our functionality of TT pools closely

reassembles LITMUS
𝑅𝑇

s table-driven reservations [13]. However,

TT pools are only an experimental functionality and not the main

focus of our paper. Notably, table-driven reservations or TT pools

could be used to schedule Linux containers as black boxes. For the

current work we only utilize containers for their spatial isolation

properties with a single TT task per container.

3.3 User vs. Kernel-space TT scheduling
As described in Section 2, time-triggered scheduling has been im-

plemented for Linux (and other POSIX-compliant systems) in user

space. One prominent example that is used in several real-world au-

tomotive projects is MotionWise [58], which is, for example, part of

the piloted driving platform of the Audi A8 [31]. MotionWise emu-

lates a time-triggered execution in user space via POSIX-compliant

system calls to the kernel. While this approach certainly has bene-

fits (being faster to develop, easier to debug, and more portable to
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Figure 3: A comparison of user space and kernel space TT
schedulers in terms of task response-times and jitter

.

other POSIX systems), the latencies experienced by real-time tasks

are significantly higher and have more runtime variance.

We show an experiment comparing our SCHED_TT kernel-level

scheduler with a time-triggered scheduling implementation in user

space, similar to the MotionWise middleware [58]. We show a his-

togram of task response times in Fig. 3, also comparing to CFS as

a non-real-time baseline. We see that while the user-space imple-

mentation is significantly more deterministic than CFS, the tasks

still have a higher response time and a higher degree of variability

in response times, as well as some outliers. Our kernel-level imple-

mentation, on the other hand, exhibits the least overhead, resulting

in lower response times with less variance for tasks. We note that

there are significant outliers for CFS (with a maximum of 12.8𝑚𝑠)

that are not shown in Fig. 3 to better visualize the differences be-

tween the kernel and user-space variants. The mean and standard

deviation (mean, std) of the task response times for CFS, user-space

TT, and kernel-space TT are (67.4`𝑠, 42.7`𝑠), (25.5`𝑠, 2.8`𝑠), and
(7.7`𝑠, 1.7`𝑠), respectively.

We will now present a more comprehensive suite of experiments

to show the potential of kernel-level TT scheduling for distributed

applications with strict determinism and low jitter requirements,

comparing also to the other real-time scheduling policies and show-

ing the limitations of the TSN-based real-time network subsystem.

4 EXPERIMENTAL EVALUATION
We evaluated the Linux kernel’s real-time capabilities using the

SCHED_FIFO scheduler, the SCHED_DEADLINE scheduler, and

our SCHED_TT scheduler by measuring the end-to-end latency be-

tween two communicating containers facing interfering workloads

with three different Linux bridge configurations. The end-to-end

latency represents the duration elapsed from the start of execution

of the sender until the end of the execution of the receiver tasks.

Moreover, in an additional setup we compare SCHED_TT against

the LITMUS
𝑅𝑇

table-driven scheduler.

When assessing the end-to-end latency, we are not interested in

its absolute value but in the degree of jitter, which is the difference

between the maximum and minimum measured latency. As such,

the end-to-end latency jitter is a measure of timing determinism.

The degree of timing determinism achievable with the Linux kernel

depends strongly on the configuration of various kernel parameters

and the setup and usage of features such as the Linux kernel’s

queueing disciplines (qdiscs) and the scheduling policy. Therefore,

we performed our experiments with a fixed base configuration

that minimized the system latency as a component of the end-

to-end latency and varied the configuration concerning the kernel

scheduling policy (SCHED_FIFO, SCHED_DEADLINE, SCHED_TT)

and the Linux software bridge. In the following, we describe our

experimental setup, including the Linux kernel configuration, the

Linux bridge configuration, and the workloads represented by four

containers and a set of native real-time tasks.

4.1 Experimental Setup
We visualize the experimental setup for our experiments in Fig. 4.

4.1.1 Linux Host Configuration. For our experiments, we used an

edge computing device with an Intel Atom E3950 with four cores at

1.594 GHz each and 8 GiB of main memory running Ubuntu server

22.04.1. For SCHED_TT experiments we ran Linux kernel v5.9.1.

For SCHED_DEADLINE the vanilla Linux kernel v5.9.1 would

crash with a kernel panic in the priority inheritance code. As a

result, we opted to use Linux kernel v6.2.0 for SCHED_DEADLINE

and SCHED_FIFO experiments. We ran the experiments with PRE-

EMPT_RT, disabled RT-throttling, no hyper-threading, disabled

CPU power management (C-states and p-states), set the kernel to

use the scaling governor to maximize the CPU frequency, and raised

the priority of interrupt threads to SCHED_FIFO priority 50. In the

following, we elaborate on the specific configurations:

PREEMPT_RT Using the PREEMPT_RT Linux patch enables big

portions of the Linux kernel code to become preemptible, including

interrupt handlers, reducing system latency of high-priority tasks.

Notably, interrupt handlers are split into an atomic low-level inter-

rupt handler that is non-preemptible and a preemptable high-level

handler executing as a kernel thread.

Disabling RT-Throttling RT-Throttling prevents high-priority

tasks, scheduled with the FiFo policy, to introduce long latencies

due to programming faults acting, e.g., similar to a while (1) loop.

By disabling RT-throttling, we rule out the possibility that latency

observed during our experiments leads back to RT-throttling pre-

empting a high-priority task (or container).

Disabling Hyperthreading Hyperthreading can cause non-

deterministic latency due to shared processor resources between

the hardware threads of a core. However, note that the Intel Atom

CPU in the edge computing device used in our experiments does

not support hyperthreading in the first place.

CPU Performance Scaling (p-states and c-states) CPU perfor-

mance scaling optimizes the power consumption of the processor

by adjusting its performance state (p-state). Unfortunately, the re-

sulting frequency scaling can cause non-deterministic timing. The

processor c-states, in turn, optimize power consumption during

CPU idle times by changing into lower power consumption states.
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Figure 4: The basic GNU/Linux host configuration used in all
experiments.

However, waking up from such idle states can again cause un-

predictable latency. As a result, we disable p-states and c-states

altogether.

Linux Performance Governor The use of p-states and c-states

is related to the Linux performance governor that scales CPU fre-

quency depending on the system load and idle state to balance

power consumption and performance. Setting the Linux perfor-

mance governor to always maximize the CPU frequency prevents

varying task execution times due to CPU frequency scaling.

Raised Software Interrupt Priority Raising the priority of

ksoftirq kernel threads scheduled by SCHED_FIFO above the CPU

background system load ensures that the Linux kernel’s network

subsystem, namely, software interrupt handlers have priority over

other applications scheduled by SCHED_FIFO.

Processor Core Affinity We configured the real-time tasks and

the sender and receiver applications in containers 0 and 1 with a

processor core affinity so the scheduler would exclusively schedule

them on processor core one. The background system load and the

network interference workload are balanced across all cores.

4.1.2 Linux Time-Aware Bridge Configuration. The default Linux
bridge configuration used in the experiments consists of three vir-

tual Ethernet devices
2 𝑣𝑒𝑡ℎ0 to 𝑣𝑒𝑡ℎ2. They are connected to their

respective counterparts 𝑠𝑛𝑑𝑖 𝑓 , 𝑟𝑐𝑣𝑖 𝑓 , and 𝑖𝑛𝑡𝑖 𝑓 , which are attached

to the containers. First, the 𝑠𝑛𝑑𝑖 𝑓 links to 𝑣𝑒𝑡ℎ0 and connects the

sender container 0 to the Linux bridge. Next, the 𝑟𝑐𝑣𝑖 𝑓 links to 𝑣𝑒𝑡ℎ1
and connects the receiver container 1 to the bridge. Finally, the 𝑖𝑛𝑡𝑖 𝑓
links to 𝑣𝑒𝑡ℎ2 and connects to the network interference container 3.

For time-aware operations, we extend the default bridge configura-

tion by TAPRIO qdiscs, introducing two traffic classes for scheduled

Qbv traffic and best-effort (BE) traffic. For applying qdiscs to veth in-

terfaces, there are two options depending on the logical boundaries

of the Linux bridge:

Linux Bridge with Scheduled Egress Port If we consider the

Linux bridge logically resembling an actual hardware bridge, the

interfaces 𝑣𝑒𝑡ℎ0 to 𝑣𝑒𝑡ℎ2 act as ports of a software bridge with clear

boundaries. As a result, for network traffic from containers 1 and 3

to container 2, we consider 𝑣𝑒𝑡ℎ0 and 𝑣𝑒𝑡ℎ2 as ingress interfaces

and interface 𝑣𝑒𝑡ℎ1 as egress. According to the IEEE 802.1 Qbv

2
https://man7.org/linux/man-pages/man4/veth.4.html

standard, we should apply the gate control list (GCL) and the time-

aware shapers to the interface facing congestion. Therefore, we

apply the TAPRIO queuing discipline to interface 𝑣𝑒𝑡ℎ1 since we

expect interfering network load to arrive from container 3 and exit

the software bridge towards interface 𝑟𝑐𝑣𝑖 𝑓 via interface 𝑣𝑒𝑡ℎ1. We

evaluate this configuration in Section 4.2.2.

Linux Bridge with Scheduled Ingress Ports The previous view

on the Linux bridge considers the interfaces 𝑣𝑒𝑡ℎ0 to 𝑣𝑒𝑡ℎ2 as ports

of a software bridge, assuming clear boundaries between the Linux

bridge and the remainder of the kernel. However, in practice, what

we perceive as a distinct software component from user space is a

composition of several kernel mechanisms and user space tools that

enable MAC- or IP-based forwarding of network packets between

software network interfaces provided by the kernel to user space. As

a result, the boundaries between the Linux bridge and the remainder

of the kernel turn blurry. Thus, strictly restricting the application of

queuing disciplines to interfaces identified as egress ports becomes

dispensable since their identification as egress or ingress ports

is ambiguous due to the Linux bridge’s compositional character.

Therefore, we apply the TAPRIO qdiscs on the two interfaces 𝑣𝑒𝑡ℎ0
and 𝑣𝑒𝑡ℎ2 forwarding data to the receiving container 1 via interface

𝑣𝑒𝑡ℎ1. We evaluate this configuration in Section 4.2.2.

4.1.3 Workloads. We used four containerized workloads and 15

real-time tasks for our experiments. The sender and receiver work-

loads in containers 0 and 1 communicate with each other utilizing

the Linux bridge. Container 3 in turn, executes a ping flood trying

to interfere with the sender’s and receiver’s communication. Lastly,

container 2 executes stress −ng with 4 CPU workers to generate

background system load. In addition to the four containerized work-

loads, we deployed 15 real-time tasks that execute with the same

or higher priority as the sender and receiver applications demon-

strating the effect of competing co-located high-priority tasks on

the end-to-end latency between containers 0 and 1. Subsequently,

we describe the functionality and rationale behind the particular

workloads and task configurations in more detail.

Real-Time Tasks We have implemented real-time tasks follow-

ing the guidelines on periodic real-time tasks on Linux provided

in [8]. A real-time task instance periodically calculates the square

root of a static sequence of numbers in a finite loop. Periodic real-

time tasks take a period and a𝑊𝐶𝐸𝑇 as parameters. We select the

actual execution time at runtime by applying an exponential tail

Gumbel distribution up to the WCET for the competing real-time

tasks. This distribution has proven useful in the statistical analysis

of task execution times [11, 55]. In total, we spawn 15 real-time

tasks that utilize the processor to approximately 70% under the

worst-case assumption. We always schedule the real-time tasks

with the same RT scheduler (SCHED_FIFO, SCHED_DEADLINE, or

SCHED_TT) as the sender and receiver applications in containers 0

and 1. Across all experiments, we used a realistic period selection

for the 15 real-time tasks as described in [37] adhering to periods

found in automotive applications. Additionally, for SCHED_FIFO,

we configured static priorities equal to or higher than the sender

and receiver, and for SCHED_TT, we generated a static schedule

table incorporating preemption of the receiver.

Sender and Receiver Applications We schedule the sender and

the receiver applications executing in containers 0 and 1 using the

https://man7.org/linux/man-pages/man4/veth.4.html
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same real-time scheduler as for the 15 real-time tasks. We enforce

a sender’s and receiver’s period of 10𝑚𝑠 for SCHED_FIFO and

SCHED_DEADLINE by sleeping for (10 −𝑊𝐶𝐸𝑇 )𝑚𝑠 . In the case

of SCHED_TT, the sender and receiver periods are enforced by the

scheduler. The sender application takes a timestamp 𝑡𝑠 and executes

a synthetic load identical to the real-time tasks for𝑊𝐶𝐸𝑇𝑠𝑒𝑛𝑑 `𝑠

before transmitting one multicast measurement packet per hyper-

period to the receiver application. The payload of the measurement

message contains the previously taken user space timestamp 𝑡𝑠
and a buffer for ten trace events consisting of a timestamp and a

string that are populated by trace points in the Linux kernel. This

custom trace extension enables us to timestamp the packet as it

passes the Linux kernel from the sending container to the receiving

container allowing detailed analysis of introduced kernel latency.

On the receiver side, the receiver reads the measurement packet

from interface 𝑟𝑐𝑣𝑖 𝑓 and executes the same synthetic load as the

real-time tasks and the sender for𝑊𝐶𝐸𝑇𝑟𝑒𝑐𝑣`𝑠 . At the end of the

receiver time slice, a timestamp 𝑡𝑟 in user space is created, and the

kernel tracing timestamps from the packet payload are extracted.

Finally, the receiver application calculates the end-to-end latency

𝑡𝑟 − 𝑡𝑠 and writes retrieved raw timestamps and latency to disk for

later analysis.

System Load We use stress-ng –class cpu –all 4 spawning

4 instances of each available CPU stressor in container 2 to generate

high background load and test the temporal isolation. Therefore,

we always schedule the background system load with CFS.

Network Interference The network interference workload run-

ning in container 2 generates congestion on the Linux bridge and

the receiving container so that we can demonstrate the effective-

ness of the time-aware Linux bridge configurations. We use a ping

flood chrt −f 40 ping −f −s 6000 to send ICMP echo requests of

6000 bytes. We always schedule the network interference container

with SCHED_FIFO and priority (40) higher than the background

load, ensuring that it will send ICMP requests as fast as possible.

4.2 Results
We performed three experiments given the experimental setup de-

scribed in the previous section to investigate the effect of the Linux

bridge configuration and the kernel scheduling policy on the end-

to-end latency. The three experiments cover different workloads

and different Linux bridge configurations with varying scheduling

policies (SCHED_FIFO, SCHED_DEADLINE, and SCHED_TT). In

an initial experiment, we ran the sender and receiver connected by

a default Linux bridge with a CPU load running in the background

scheduled with CFS to establish an end-to-end latency baseline.

In the second experiment, we added 15 RT tasks to the setup so

they compete for processor time with the sender and receiver. In a

final experiment, we varied the Linux bridge configuration (default,

scheduled egress, and scheduled ingress) and introduced an addi-

tional ping flood workload to test the effect of interfering network

load on the end-to-end latency.

For all experiments, in the case of SCHED_FIFO, we assigned

static priority 60 to the sender and receiver and random pri-

orities equal or higher to the 15 RT tasks. In contrast, for

SCHED_DEADLINE the dynamic priorities directly result from

the WCETs and periods so that no additional configurations were
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Figure 5: Showing the static schedule of sender and receiver
for SCHED_TT and the schedules of the Linux bridge with
scheduled egress versus scheduled ingress ports.

required. For SCHED_TT, we generated a schedule table that exe-

cutes the sender consecutively at offset 1100 `𝑠 for 1400 `𝑠 while

the receiver’s execution starts at offset 3500 `𝑠 , is then preempted

for 300 `𝑠 at offset 3900 `𝑠 and completes at 4200 `𝑠 resulting in

an expected end-to-end latency of 3.1𝑚𝑠 . We visualize the static

schedules of the sender and receiver for SCHED_TT in Fig. 5c. We

ran the experiments for 10minutes with 12 separate runs to guaran-

tee a fair distribution of emergent runtime behaviors depending on

the respective initial system state, specifically the scheduler state.

Note that we are not biasing results so that SCHED_TT outperforms

SCHED_FIFO and SCHED_DEADLINE by choosing a beneficial task

set. However, it is an inherent property of table-driven scheduling

that it enables us to optimize for certain task and communication

characteristics, e.g., end-to-end latency jitter, by computing exact

task dispatch and packet transmission/receive times before runtime.

SCHED_FIFO and SCHED_DEADLINE can also be aligned to the

transmission schedule, but only for a limited number of applica-

tions. For example, for SCHED_FIFO, the sender task can be put

to the highest priority and aligned to the transmission time of the

corresponding message; however, if multiple such critical commu-

nicating tasks are present, they will interfere with each other and

cannot be easily aligned to the network schedule. Hence, our setup

corresponds to a system where the critical tasks compete with each

other both for computing resources and alignment to the commu-

nication schedule. For time-triggered scheduling, this competition

for resources is resolved offline by the static schedule synthesis. In
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Figure 6: End-to-end latency using default Linux bridge.

terms of schedulability, it is known that EDF and TT have the high-

est schedulability bound (100%) while FP has a utilization bound of

69% in theory. However, in some cases, e.g., for harmonic periods,

the utilization bound for FP is also 100% [47]. Here, we focus on

the practical differences between the different schedulers in terms

of latency and jitter within the Linux kernel.

4.2.1 Effect of Competing RT Tasks on E2E Latency. For our initial
experiment, we configured the host Linux kernel to use a default

Linux kernel bridge without TAPRIO qdiscs, as shown in Fig. 4. We

tested a total of six configurations with the default Linux bridge

varying the used Linux kernel scheduling policy (SCHED_FIFO,

SCHED_DEADLINE, and SCHED_TT) and the workloads. We mea-

sured the end-to-end latency when there is only a CPU-intensive

background load running CFS and when there are 15 other RT tasks

present. This enabled us to identify the effect of kernel task sched-

uling policies on the end-to-end latency when there are competing

RT tasks present, and there is no TAPRIO qdisc in place.

In Fig. 6, we visualize the measured end-to-end latency for

SCHED_FIFO (FIFO), SCHED_DEADLINE (DL), and SCHED_TT

(TT) with background load only and with additional RT tasks. For

background load only ( stress −ng), we measured a similar end-to-

end latency of SCHED_FIFO 𝑎𝑣𝑔𝐹𝐼𝐹𝑂 = 4.085, 𝑠𝑡𝑑𝐹𝐼𝐹𝑂 = 0.024𝑚𝑠 ,

𝑚𝑖𝑛𝐹𝐼𝐹𝑂 = 3.107𝑚𝑠 ,𝑚𝑎𝑥𝐹𝐼𝐹𝑂 = 5.102𝑚𝑠 and SCHED_DEADLINE

𝑎𝑣𝑔𝐷𝐿 = 4.094, 𝑠𝑡𝑑𝐷𝐿 = 0.314𝑚𝑠 , 𝑚𝑖𝑛𝐷𝐿 = 3.296𝑚𝑠 , 𝑚𝑎𝑥𝐷𝐿 =

14.093𝑚𝑠 while for SCHED_TT we measured an end-to-end la-

tency of 𝑎𝑣𝑔𝑇𝑇 = 3.302, 𝑠𝑡𝑑𝑇𝑇 = 0.159𝑚𝑠 , 𝑚𝑖𝑛𝑇𝑇 = 3.242𝑚𝑠 ,

𝑚𝑎𝑥𝑇𝑇 = 3.486𝑚𝑠 that deviates at worst by 386 `𝑠 from the of-

fline calculated end-to-end latency. When adding competing RT

tasks, we observe that the average of SCHED_FIFO dropped to

𝑎𝑣𝑔𝐹𝐼𝐹𝑂 = 3.545𝑚𝑠 while the standard deviation increased to

𝑠𝑡𝑑𝐹𝐼𝐹𝑂 = 0.161𝑚𝑠 . The drop of SCHED_FIFOs average end-to-end

latency can be explained by the sender and receiver being scheduled

closer to each other. This is due to the competing RT tasks delaying

the sender execution when compared to the experiments with back-

ground load only. For all three schedulers, adding competing RT

tasks introduces end-to-end latency outliers of exactly one sender

and receiver period (10𝑚𝑠). In the case of SCHED_DEADLINE, the

outlier was even present in the experiment with only background

load. We can trace back these outliers to the sender or receiver allo-

cating a socket kernel buffer (struct sk_buff) for transmission or

reception of a measurement packet. If the kernel’s object cache is

exhausted, the attempt to allocate a struct sk_buff causes a pre-

emption of the RT task and a kernel worker thread rcuc inheriting

the RT task’s priority to free objects from the kernel’s object cache.

Once rcuc returns control back to the original RT task, there is not

sufficient execution time left, so the RT task misses its deadline and

completes its execution in the next period.

Notably, except for the single explicable and preventable outlier

with 𝑚𝑎𝑥𝑇𝑇 = 13.306𝑚𝑠 , SCHED_TT depicts no degradation of

end-to-end latency when facing competing RT tasks confirming

its well-known properties of temporal isolation, complex timing

requirements, determinism, and predictability in an implementation

for a general purpose OS such as GNU/Linux.

4.2.2 Effect of the Linux Bridge Configuration on E2E Latency. In
the previous Section, we confirmed that background workloads

scheduled with CFS do not degrade the end-to-end latency of RT

tasks. However, competing real-time tasks with equal or higher

priority affect the end-to-end latency when using SCHED_FIFO or

SCHED_DEADLINE, even if we ignore the outliers present for all

three schedulers. In contrast, the end-to-end latency of RT tasks

scheduled using SCHED_TT is unaffected except for a single outlier.

Next, we evaluated the end-to-end latency when using different

Linux bridge configurations in the presence of competing real-time

tasks and interfering network load in container 2. For the first setup,

we used the default Linux bridge configuration without TAPRIO

qdiscs, as in the previous experiments. For the second setup, we

configured the egress port of the Linux kernel bridge to apply a

TAPRIO qdisc as introduced in Section 4.1.2 to prevent congestion

on the receiver interface 𝑟𝑐𝑣𝑖 𝑓 in the case of container 2 sending

packets to the receiver. In Fig. 5a, we illustrate the used TAPRIO

qdisc on 𝑣𝑒𝑡ℎ1 and the SCHED_TT static schedule table executing

on core 1 (we used the same TT schedule as in experiment 0 and

visualized in Fig. 5c). Scheduled traffic is assigned to traffic class 2

while unscheduled traffic is assigned to traffic class 1. For the final

setup, we configured the interface 𝑣𝑒𝑡ℎ1 and 𝑣𝑒𝑡ℎ3 attaching to

the Linux kernel bridge to apply TAPRIO qdiscs to enforce packet

transmission times as shown in Fig. 5b. We force all traffic leaving

the interfering container 3 to be assigned to traffic class 1 so that

its transmission on 𝑣𝑒𝑡ℎ2 stops during the scheduled traffic’s time

slot, preventing congestion on 𝑣𝑒𝑡ℎ1.

In Fig. 7, we illustrate the measured end-to-end latency for

SCHED_FIFO (FIFO), SCHED_DEADLINE (DL), and SCHED_TT

(TT) and the three Linux bridge configurations. Firstly, for

SCHED_FIFO, we measured an end-to-end latency across Linux
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Figure 7: Comparing different bridge configurations for SCHED_FIFO, SCHED_DEADLINE, and SCHED_TT with background
load, competing RT tasks, and a ping flood workload in a co-located container.

bridge configurations consistent with the results in the previous

experiment featuring competing RT tasks. Note that this runtime

behavior traces back to our specific task set and the rate monotonic

priority assignment shifting the execution of the sender closer to

the receiver resulting in the observed consistent end-to-end latency

distribution. However, in the case of SCHED_DEADLINE, we see a

more widespread distribution of values that we account to introduc-

ing interfering network load in the form of the ping flood workload

in container 2. Note that on a containerized system introducing

network load between co-located containers does materialize in in-

creased utilization of kernel resources, namely, kernel memory and

computational resources such as software interrupts with their cor-

responding timers and interrupt handler kernel thread. Therefore,

we hypothesize that the observed end-to-end latency distribution

of SCHED_DEADLINE stems from changing system behavior due

to unpredictable runtime effects, such as priority inheritance and

kernel memory management, that emerge increasingly under dy-

namic priority scheduling causing a branching out of the kernel’s

state space.

Finally, for SCHED_TT, we find results analogous to the pre-

vious experiment featuring competing RT tasks. Interestingly, to

begin with, we observe a degradation of end-to-end latency timing

determinism for SCHED_TT when using a bridge with a scheduled

egress port featuring an extreme outlier of 63.359𝑚𝑠 . In contrast,

for SCHED_TT with scheduled ingress ports, we measured an end-

to-end latency with minimal jitter and none of the before commonly

observed outliers. We repeated the experiment with SCHED_TT

and scheduled ingress port to verify this result and obtained ap-

proximately the same end-to-end latency measurements.

4.2.3 Comparison to the LRT Table-Driven Scheduler.
LITMUS

𝑅𝑇
[13] extends the Linux kernel (the latest kernel

version supported is v4.9.30) with real-time scheduling capabilities

focusing on multicore scheduling and synchronization. It imple-

ments modular scheduler plugins also supporting table-driven

scheduling based on time reservations similar to our SCHED_TT

implementation. We compare our implementation with LITMUS
𝑅𝑇

concerning the intrusiveness of the respective scheduler given

by the number of kernel modifications in lines of code (LoC) and

the measured end-to-end latency as in the previous experiments

in Fig. 8. To compare against LITMUS
𝑅𝑇

, we had to switch

our experimental platform to an Intel NUC7i5BNH with an

Intel Core i5 and 8𝐺𝑖𝐵 of main memory since we were unable to

boot LITMUS
𝑅𝑇

v4.9.30 on our Intel Atom based edge computing

device. On the Intel NUC, we ran Ubuntu server 16.04.7 with

LITMUS
𝑅𝑇

kernel version v4.9.30, and we applied the Linux

host configurations as described in Section 4.1.1 which included

disabling hyperthreading leaving us with two physical cores.

Furthermore, the Linux kernel v4.9.30 lacks support for TAPRIO

qdiscs, so that we could only perform experiments featuring the

default bridge. We repeated the same experiments on this platform

for our SCHED_TT implementation.

When comparing the intrusiveness of the LITMUS
𝑅𝑇

extension

with our SCHED_TT implementation, we find that LITMUS
𝑅𝑇

re-

quires modifications in 27 kernel source files totaling to ≈ 20𝐾 LoC

with the table-driven dispatcher accounting for 426 lines of code. In

addition, there are ≈ 10𝐾 LoC for user space libraries and tooling. In

contrast, our SCHED_TT implementation requires modifications to

19 kernel source files totaling to ≈ 3.5𝐾 LoC with the table-driven

scheduler accounting for 436 LoC. We note that LITMUS
𝑅𝑇

is more
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Figure 8: Comparing the end-to-end latency of LITMUS𝑅𝑇

table-driven scheduling and our SCHED_TT implementation.

intrusive to the kernel requiring more modifications, mainly be-

cause of the various multicore schedulers and experimental features

provided. Our SCHED_TT implementation is, in turn, more stream-

lined to only time-triggered scheduling and, thus, less intrusive

to the kernel facilitating porting SCHED_TT to different kernel

versions (the latest supported version is v5.9.1).

In Fig. 8, we compare LITMUS
𝑅𝑇

’s table-driven scheduler (LRT)

with our SCHED_TT implementation (TT) replicating the exact se-

tups from Sections 4.2.1 and 4.2.2 featuring only the default bridge.

We used exactly the same task sets and schedule tables for both im-

plementations. We note that LITMUS
𝑅𝑇

’s table-driven dispatcher

shows a more spread-out end-to-end latency distribution across

all configurations. In contrast, SCHED_TT performs comparably

to previous experiments on our edge computing device. Notably,

in this set of experiments, we did not observe a single outlier of

SCHED_TT. For LITMUS
𝑅𝑇

, we observed frequent sender and re-

ceiver deadline misses indicating that LITMUS
𝑅𝑇

would possibly

require more fine-tuning of the configuration and the schedule

tables. Furthermore, the performance difference might be explained

by LITMUS
𝑅𝑇

’s lack of PREEMPT_RT patches resulting in more

and longer nonpreemptible kernel sections, which can lead to an

increased end-to-end latency jitter.

4.3 Outlier discussion
In all experiments with background load ( stress −ng and ping flood),

we see occasional outliers for all real-time scheduling classes indi-

cating that they are not inherent to our SCHED_TT implementation

but present independently. We have investigated the source of these

outliers using the Linux kernel’s ftrace utility and identified two

types of delays introduced by the Linux kernel that result in dead-

line misses.

Firstly, in the case of outliers in the range of one or two periods

(≈ 10𝑚𝑠 to ≈ 20𝑚𝑠), there is the issue mentioned above when an

RT task attempts to allocate a struct sk_buf and the kernel’s object

cache for fast memory allocations is exhausted. Subsequently, the

lower priority rcuc kernel thread inherits the RT task’s priority and

starts freeing the kernel object cache hence consuming the parent

RT task’s runtime. Once the kernel lowers rcuc’s priority back and

execution returns to the parent RT task, it has already exceeded its

WCET causing a deadline miss and measurement packet delivery

in the next period.

Lastly, we traced back the 63.359𝑚𝑠 outlier observed in the case

of SCHED_TT with scheduled egress port (c.f. Fig. 7) to software

interrupt handling. In fact, the Linux kernel with PREEMPT_RT

patches handles pending software interrupts in the context of any

task, including background tasks with their current priority and

scheduling class. If the kernel exceeds the time threshold of ≈ 2𝑚𝑠

for in-task context software interrupt handling, the kernel delegates

processing of the remaining software interrupts to the ksoftirq ker-

nel thread. Now, if a background task scheduled with SCHED_CFS

is handling software interrupts, a higher priority task becoming

ready will preempt software interrupt handling and delay interrupt

delivery. We argue that the absence of this type of delay in the case

of scheduled ingress ports is due to the temporal proximity of trans-

mitting the measurement packet in the container and the kernel

processing the packet and corresponding software interrupts in the

RT context of the sender. In contrast, in the case of scheduled egress

ports, processing the software interrupt (associated with sending

scheduled traffic) takes place several hundreds of microseconds

later, and thus in the context of an arbitrary task, as can be seen in

Fig. 5a. Furthermore, we hypothesize that the aggressive, strictly

time-driven preemption of SCHED_TT promotes the occurrence of

this specific delay since the receiver (or any other RT task) can pre-

empt a lower-priority task performing in-task interrupt handling

before the packet transmission interrupt has been processed.

5 CONCLUSION
In this paper, we proposed an additional kernel-level scheduler

for the GNU/Linux operating system, which implements a time-

triggered (TT) approach. We have investigated the benefits of our

new TT scheduler in terms of the level of real-time guarantees

that can be achieved. We have shown in a series of experiments

that time-triggered scheduling in the Linux kernel results in re-

duced latency and jitter for real-time applications when compared

to the existing (real-time) scheduling policies and a user-space

time-triggered implementation. Additionally, in terms of end-to-

end communication latencies for distributed real-time applications,

we have investigated a software-based IEEE 802.1Qvb time-aware

gating implementation for time-sensitive networking (TSN), where

the networks and task schedules can be aligned. While our time-

triggered scheduler at the kernel level has benefits in terms of

stricter deterministic execution of tasks, there are still problems in

the communication subsystem of Linux related to bottlenecks with

certain kernel buffer allocations, resulting in occasional outliers

independently of the scheduler policy used.
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