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Abstract—In order to meet the requirements of critical ap-
plications, modern multi-core multi-SoC real-time systems must
handle both periodic and sporadic events within specified dead-
lines. A two-level scheduling hierarchy that combines time-
triggered and fixed-priority scheduling is effective for managing
periodic time-triggered (TT) and sporadic event-triggered (ET)
tasks, respectively. We introduce two polling-based approaches,
called simple and advanced polling, for guaranteeing both TT
and ET task deadlines within single core systems. We then
propose an optimization heuristic for the task-to-core allocation
problem based on genetic algorithms for fully partitioned multi-
core systems that can be applied to both polling methods.
We evaluate the schedulability and runtime performance of
the polling approaches and investigate the effectiveness of the
allocation heuristic using synthetic test cases based on real-world
application characteristics. The results show that both polling
approaches achieve high schedulability with low runtime, and
the allocation heuristic can generate good solutions for fully
partitioned systems. Furthermore, we show that the server design
problem of the advanced polling approach can be integrated into
the allocation heuristic to achieve better solutions in terms of
schedulability and that our choice of the genetic algorithm has
a good speedup when being parallelized.

Index Terms—real-time, time-triggered, event-triggered

I. INTRODUCTION

Modern multi-core multi-SoC real-time systems, such as
those found in automotive applications [1], must respond to a
mixed set of periodic and sporadic events to fulfill the require-
ments of critical applications. Usually, a mix of time-triggered
scheduling (TT) and event-triggered (ET) tasks are used to pro-
cess these periodic and sporadic events. There are many trade-
offs between the time- and event-triggered approaches. Time-
triggered systems tend to be more predictable, more stable,
support a compositional approach, and have low jitter and high
determinism [2], [3], [4], [5], [6]. Time-triggered (TT) systems
are commonly used in the safety-critical aerospace domain due
to stringent certification requirements [7], [8]. On the other
hand, event-triggered systems allow more flexibility to respond
quickly to sporadic events and result in lower average response
times for tasks. More recently, many automotive applications
have moved to integrate a mix of time-triggered and event-
triggered scheduling [9], [1] to achieve a more deterministic
temporal behavior while not sacrificing flexiblity [5], [4].
Moreover, modern real-time systems are also distributed and
multi-core, especially in the automotive domain, and feature
a distributed multi-SoC multi-core platform (c.f. [9], [1]) run-
ning a mixed time-and event-triggered task set with complex

dependencies (e.g., cause-effect chains [10]). Hence, the multi-
core task allocation and scheduling problem, which is NP-
complete, is especially important in emerging applications
like Advanced Driver-Assistance Systems (ADAS) [9], [1].
Modern safety-critical real-time systems will therefore require
mixing the time-triggered and event-triggered approaches in a
multi-core platform, merging the strict determinism of time-
triggered dispatching with the flexibility of event-based han-
dling. In such mixed systems, periodic time-triggered (TT)
tasks are handled within predefined TT slots that are part of
the static schedule table, and sporadic event-triggered (ET)
tasks are executed within dedicated polling slots within the
static schedule table. Moreover, ET tasks can also reuse slack
generated within TT slots when periodic tasks finish their
execution early. Traditionally, sporadic ET tasks are integrated
into time-triggered systems via a feedback loop integrated into
the TT schedule generation [11], [12].

In this paper, we investigate multi-core mixed event-and
time-triggered systems where sporadic arbitrary-deadline and
periodic constrained-deadline tasks must meet their predefined
deadlines. We first introduce two polling-based approaches,
called simple polling (SPoll) and advanced polling (AdvPoll),
which guarantee the schedulability of the mixed sporadic and
periodic task set in single core systems. Next, we introduce
a genetic task-to-core allocation heuristic for the partitioned
multi-core scheduling approach that can be applied to both
polling methods. We note that TT tasks are always partitioned
or semi-partitioned since the execution is based on statically-
defined schedules, and there cannot be any runtime migration
based on dynamic decisions like in global scheduling. For
ET tasks, we also assume a fully-partitioned approach and
leave a global scheduling solution for future investigation,
noting that a (semi-)partitioned approach may be enough for
most systems [13]. We investigate the trade-offs in terms of
schedulability and runtime of both polling-based approaches
and demonstrate in a series of experiments that we can
efficiently solve the allocation problem for partitioned multi-
core systems using our genetic algorithm. Finally, we also
investigate the usefulness of integrating the server-design
problem for AdvPoll into the genetic algorithm search.

We describe the system model in Sec. II and related work in
Sec. III. We present the polling-based approaches in Sec. IV
and detail our allocation heuristic in Sec. V. We finally
evaluate our solution in Sec. VI and conclude in Sec. VII.
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Fig. 1: TT schedule with 2nd-level fixed-priority scheduling.

II. SYSTEM MODEL

We assume a (distributed) multi-core system in which, on
each core of each node, there is a table-driven dispatcher
(cyclic executive) which executes periodic TT tasks accord-
ing to a statically computed and configured time-triggered
schedule table. In the idle slots that are left within the TT
table, the dispatcher implements a 2nd-level preemptive fixed-
priority scheduler (c.f. Fig. 1) running sporadic ET tasks. The
TT scheduler always takes priority over the 2nd-level fixed-
priority scheduler, meaning that any ET task will be preempted
whenever a TT task needs to be executed. We denote with
T TT and T ET the sets of TT and ET tasks, respectively. A
TT or ET task ⌧i is modeled using the tuple (Ci, Ti, Di),
where Ci represents the worst-case execution time and Di is
the relative deadline. For TT tasks, Ti denotes the period of the
task, while for the sporadic ET tasks, Ti describes the minimal
inter-arrival time (MIT), which represents the minimum time at
which an event of the type can arrive after the previous arrival.
TT tasks have a constrained deadline (i.e., Di  Ti), and for
ET tasks, the deadline can be larger than the inter-arrival time
(arbitrary-deadline model). An ET task ⌧i also has a priority
value denoted with p(i). ET tasks are sorted and indexed in
the order of their priority, i.e., if ⌧i has a higher priority than
⌧j (p(i) > p(j)), then i > j (FIFO order for equal priorities).

The granularity of the timeline for scheduling is based on
microticks where a microtick mt (slot length) is the smallest
scheduling granularity for tasks [12], and we assume that all
task parameters are already scaled to be a multiple of the
microtick mt. Each schedule repeats after a certain time period
called the schedule cycle (or hyperperiod). As stated before,
we assume a fully partitioned approach, meaning that both TT
and ET tasks need to be assigned to the cores and nodes at
design time, and there is no migration at runtime.

III. RELATED WORK

Integrating sporadic event-based tasks in systems with a
time-triggered scheduler is more challenging than in purely
fixed- or dynamic-priority systems. The mixed time- and
event-triggered application model in [11] is similar to ours.
However, the task model in [11] assumes a very restrictive
task model in which ET tasks need to be periodic, whereas
we work with a more generic and realistic sporadic task model.
Using this periodic ET arrival model, the authors present an
allocation and scheduling heuristic in which each candidate
solution for the time-triggered schedule is investigated using a
schedulability test for event-triggered tasks. The static table is
regenerated if the ET tasks are not schedulable with the current

candidate TT schedule solution. The approach in [11] attempts
to generate correct TT schedules for the periodic tasks while
trying to maximize the schedulability of ET tasks. However,
they do not guarantee to find feasible static schedule tables that
also fully fulfill the ET task deadlines. In contrast, our polling-
based approaches only accept solutions where both TT and ET
tasks fulfill their respective deadlines.

Our advanced polling approach can be viewed as a sim-
plified version of hierarchical scheduling approaches such
as [14], [15], [16] (c.f. Sec. IV-B) with 2 levels, a time-
triggered scheduler on the bottom level, and a fixed-priority
scheduler for ET tasks on the top level. For advanced polling,
we also use the periodic resource abstraction (or periodic
server) to decouple TT schedule generation from ET task
schedulability analysis as in [14], [15], [16]. Using the worst-
case service pattern for the periodic resource abstraction,
as in [14], has the downside of the abstraction overhead
(c.f. [16]) and, additionally, the server design problem [17]
makes the problem difficult to solve, even for bandwidth-
optimal approaches such as [18]. Moreover, in hierarchical
approaches, there is the additional complexity of the allocation
problem, which is not usually addressed. We base our AdvPoll
method on [14] and use their schedulability test for fixed-
priority systems within the periodic resource abstraction.

Slot-shifting [19], [12] introduces more flexibility in the
time-triggered approach by allowing TT tasks to execute
outside their assigned TT slots. While this improves the
flexibility of TT schedules and ET task response times, the
added dynamic runtime behavior may not be allowed for high-
criticality functions that require safety assurance. Nevertheless,
the work in [19], [12] is related to ours in that they introduce
an efficient static schedulability test for ET tasks under the
assumption of a given TT schedule. The test only needs to
check so-called critical slots instead of all possible arrival
times for ET tasks, making it more efficient in terms of
runtime. Another more flexible approach for TT systems has
been introduced in [20] where the schedule is safely adapted
at runtime to allow for improved Quality-of-Service or the
execution best-effort tasks.

IV. POLLING-BASED INTEGRATION OF TT AND ET TASKS

We introduce two polling-based approaches based on prior
work for single-core systems that are orthogonal to the allo-
cation problem for multi-core systems presented in Sec. V.

A. Simple polling

An obvious and computationally “cheap” method, which we
call simple polling (SPoll), is to let each ET task ⌧i 2 T ET

be handled by its own polling TT task ⌧
p
i . The over-sampling

period T
p is easily derived for, e.g., out of the availability

function in [14] as T p
i = bDi+Ci

2 c. For sporadic ET tasks with
constrained deadlines, the polling task has a computation time
C

p
i = Ci. For sporadic ET tasks with arbitrary deadlines, we

need to consider how many previous job releases there can
be within any polling period. Hence we have C

p
i = dTp

i
Ti

e ·
Ci. This approach can be very pessimistic for tasks with a



short deadline and long MIT/period or a long deadline and
short period/MIT, leading to reduced schedulability. Hence,
this approach results in a large over-utilization and will most
likely not result in any feasible TT schedule creation.

B. Advanced polling

A more precise approach, which we call advanced polling

(AdvPoll), is a simplified version of the hierarchical schedul-
ing paradigm [15], [16], [17] with 2 levels, a 2nd-level fixed-
priority (FP) dispatcher for ET tasks, and a time-triggered
dispatcher on the lowest level, similar to [14]. Our reference
method for the advanced polling is [14], where the schedula-
bility of a set of constrained deadline sporadic tasks is verified
under a server with a given capacity and period. Similar
to [14], we define a periodic resource abstraction (basically a
budget and period) for the polling task such that the sporadic
ET tasks are still schedulable if the polling task gets the desired
budget in the given period. The offline schedule synthesis
step for TT tasks can then readily include the polling task
when generating the schedule table as another periodic (set of)
TT task(s), e.g., using exact methods or heuristics (c.f. [21]).
Naturally, there can be more than one polling task, each of
them handling a disjoint subset of the ET tasks. Using multiple
polling tasks and deciding the mapping of ET tasks to them has
an equivalent effect to re-assigning tasks’ priorities since low-
priority ET tasks can execute before higher-priority ET tasks.
However, we have seen in our experiments that if priorities
are assigned in a deadline-monotonic fashion, using multiple
polling tasks yields worse or equal (in the best-case) results
compared to using a single polling task.

We assume that there is only one polling task ⌧p handling
the entire set T ET of ET tasks for which C

p and T
p have

to be determined. While in [14] the polling task (periodic
resource) is defined by a budget Cp and a period T

p, a more
general model called Explicit Deadline Periodic (EDP) [18],
[22], [17] can be used in which the server also has a deadline
D

p 6 T
p. While this extension may increase the search space

for possible TT schedules (and, therefore, schedulability), it
will also result in a more complex server design problem (see
below). The lower supply bound function slbf(t) from [14]
of a polling task ⌧

p in any time window of length t > 0. The
exact expression of slbf(t) can be found in [14], based on the
characteristic function from [17]. To reduce complexity, the
slbf(t) is usually bound linearly from below by the so-called
linear supply lower bound function lslbf(t) (c.f. [17]) defined
in [14] using ↵ = Cp

Tp and � = 2 · (T p � C
p), as

lslbf(t) = max{0, (t��) · ↵}. (1)

Following the method in [14], we compute for each ET task
⌧i 2 T ET and for each instant t the maximum load of task ⌧i

and all higher and equal priority tasks (maximum load of level-
i) Hi(t). We can use the classical definition of the maximum
load of level-i from [23] for constrained deadline tasks, namely

Hi(t) =
iX

j=1

⇠
t

Tj

⇡
· Cj . (2)

The schedulability condition for an ET task ⌧i 2 T ET is
defined in Lemma 1 of [14]. The worst-case response time
Ri for task ⌧i 2 T ET can be calculated by determining the
earliest time instant in which the maximum load of level-i
Hi(t) intersects the linear supply bound function lslbf(t) of
the polling task from Eq.(1), as follows [14]:

Ri = earliest t : t = �+Hi(t)/↵. (3)

While this method has the advantage of decoupling the
schedulability of ET tasks from the generation of the TT
schedule, the parameters of the polling task need to be
found (which is, in essence, the non-trivial server design
problem [15], [14]). In classical hierarchical scheduling, the
aim is to find the resource abstraction with the least impact on
other components, i.e., the best (Cp

, T
p) where the utilization

is just large enough to respect the ET deadlines. The search
for the best (Cp

, T
p) may be complex since we have to iterate

not only through T
p, but for every T

p, we need to find C
p

(and potentially D
p). If TT tasks have implicit deadlines, we

can use a simplification here to eliminate the binary search for
C

p for every T
p since we can use the maximum C

p that does
not lead to overutilization, i.e., Cp = b(1� U

TT ) · T pc.
Once the polling task has been found, the schedule gen-

eration step can be done by including the polling server as
another TT task along the existing TT tasks and simulating
EDF/LLF scheduling until the hyperperiod of the resulting
task set (e.g. [24], [25]). The schedule generation is relatively
efficient, especially for harmonic TT task periods where the
hyperperiods are (relatively) small [26] or when period re-
dimensioning is possible to reduce the hyperperiod [27].
However, the main drawback of this approach is that we
have to find the server parameters of the polling task. While
there are specific optimizations that can be employed (e.g.,
using external points [14] or the methodology from [17]), the
approach can be computationally intensive for large systems
or when considering the task-to-core allocation problem as an
additional dimension (c.f. Sec. V).

V. GENETIC ALGORITHM FOR THE TASK-TO-CORE
ALLOCATION PROBLEM

So far, we have focused on the single-core case. How-
ever, modern real-time systems feature distributed multi-SoC
multi-core platforms (c.f. [9], [1]) running mixed sets of
tasks with complex dependencies (e.g., multi-rate cause-effect
chains [10]). In such systems, the time-triggered paradigm
implies solving the NP-complete allocation problem in par-
titioned or semi-partitioned solutions and then generating a
correct schedule table for each core. Hence, the multi-core
task allocation/scheduling and inter-dependence problems are,
in essence, orthogonal to the presented polling approaches.

We propose a genetic algorithm with k-tournament selec-
tion [28] to optimize the task-to-core and scheduling problems
for partitioned multi-core systems that integrate TT and ET
tasks. The algorithm begins with an initial population (initial
task-to-core mapping) that can be created using 4 different
methods (c.f. Sec. V-D). A ”chromosome” is an unique list



of values that describes a single solution, i.e., the target core
ID for each TT and ET task, and, for the optimization of
the Polling Servers parameters, the budget, period and relative
deadline of each server. Each solution is then evaluated based
on a fitness function (described below). The fittest chromo-
somes (candidate solutions) are then selected for reproduction
through a process called crossover. During crossover, pairs
of chromosomes exchange pieces of their genetic material to
create new offspring chromosomes. Additionally, genetic algo-
rithms also include a mutation step, which introduces random
changes in the genetic material of the offspring chromosomes.
Through this randomization, local optima are avoided and we
encourage search space exploration. The selection, crossover,
and mutation sequence is repeated for multiple generations,
with the hope that the population will evolve toward a (near-
)optimal solution. The algorithm terminates either when a so-
lution meets a specified fitness threshold or when a predefined
number of iteration have elapsed. We use a genetic algorithm
with k-tournament selection because it provides a good mix
between exploration and exploitation, good scalability, and
a suitable degree of parallelization [28]. The pseudocode in
Alg. 1 describes our multi-threaded genetic algorithm with k-
tournament selection.

Algorithm 1 Genetic algorithm with k-tournament selection
Input: maxIterations, population

1: i 0
2: father  copy(population[getGoodChromosomeID()])
3: mother  copy(population[getGoodChromosomeID()])
4: while i < maxIterations do
5: mutationRate mutationSchedule( i

maxIteration )
6: roundCount roundSchedule( i

maxIterations )
7: son crossingOver(mother, father)
8: son mutate(son,mutationRate)
9: sonF itness computeFitness(son)

10: mutex.lock()
11: victimId getBadChromosomeID()
12: population[victimId] son
13: populationF itness[victimId] sonF itness
14: father  copy(population[getGoodChromosomeID()])
15: mother  copy(population[getGoodChromosomeID()])
16: mutex.unlock();
17: i i+ 1;
18: end while

The algorithm begins by initializing a counter of the cur-
rent iteration (i) to 0. It then selects two good-performing
chromosome from the current population using the getGood-

ChromosomeID function (c.f. Sec. V-A), which returns the
chromosome with the highest fitness value among a random
subset of size k of the population (where k is the round count).
The algorithm then enters the main loop, which runs until
the predefined number of loops specified by maxIterations

has elapsed. Within each iteration, the algorithm determines
the mutation rate and the number of rounds (tournaments)
using the mutationSchedule and roundSchedule functions. The
crossover is then performed on the parent chromosomes to
create a new offspring chromosome. The mutation operation
is then applied to the resulting offspring chromosome with the
mutation rate computed in the previous step.

The fitness of the offspring chromosome is evaluated (and
stored) using the computeFitness function (c.f. Sec. V-B),
which returns a fitness value based on how well the chromo-
some solves the problem (see below). The algorithm then se-
lects a victim chromosome from the population to be replaced
by the offspring chromosome using the getBadChromosomeID

function, which returns the ID of the chromosome with the
lowest fitness value among a random subset of the population.

When running the algorithm on multiple cores, we avoid
race conditions by locking the population data structure before
replacing the victim chromosome with the offspring chro-
mosome and updating its fitness value. The algorithm then
selects new parent chromosomes from the population using
the getGoodChromosomeID function. This process repeats
until the maximum number of iterations is reached. Note
that many possible stop criteria can be used, e.g., time or
reaching a certain solution quality. The genetic algorithm uses
a combination of selection, crossover, and mutation to evolve a
population of potential solutions to a given problem. The fittest
chromosomes are selected for reproduction, which increases
the likelihood of producing even fitter offspring in the next
generation. The algorithm continues to evolve the population
for a specified number of iterations, after which the best-
performing chromosome is returned as the solution.

A. Finding good and bad chromosomes

A chromosome is considered “good” when it has a high
fitness value compared to a randomly selected subset of
chromosomes, and is therefore used as a parent to create a
new chromosome. To find a good chromosome, an individual
is chosen randomly from the population and designated as
the current best candidate. This candidate is then compared
to another randomly chosen individual, and the solution with
higher fitness becomes the current best candidate with a
selection probability known as “selectionProbability”. This
process is repeated for a specified number of rounds, with the
best candidate from all comparisons being deemed the ”good”
chromosome. Two parameters control the selective pressure
during this process:
• roundsCount: controls the number of rounds (or tourna-

ments) to be held in the k-tournament selection process.
Increasing the number of rounds will increase the number of
tournaments, creates a stronger selection pressure and may
lead to faster convergence, but it may also increase the risk
of premature convergence and the loss of genetic diversity.

• selectionProbability: controls the probability that a good
chromosome (i.e., a winner of a tournament) is selected as
a parent for the next generation. Changing this parameter
results in a similar trade-off as the roundsCount parameter.

These parameters can be adjusted to balance the trade-off
between convergence speed and genetic diversity. A ”bad”
chromosome, on the other hand, has relatively low fitness
compared to a randomly selected subset of size k in the
population. It can be found using the same method as selecting
a good chromosome, but instead of maximizing fitness, the
goal is to minimize it.



B. Fitness function

The fitness value indicates how well the individual solves
the problem at hand and is usually problem-specific. Here,
the optimization goal is to find a solution where the task set is
schedulable and the response time of all tasks is minimized.
In particular, the objective is to minimize the average worst-
case response time of both Time-triggered and Event-triggered
tasks. The fitness function proposed is comprised of two parts:
f1(x) evaluates the worst-case response time of all tasks, while
f2(x) evaluates the schedulability of TT and ET tasks on each
core. Given the set of tasks T TT and T ET , R

TT
i (x) and

R
ET
i (x) the worst case response time of the i-th task given

the solution x, DTT
i and D

ET
i the deadline of the i-th task,

!
TT and !

ET the weight factor for TT tasks and ET tasks,
then f1(x) is defined as follow:

f1(x) =
!
TT

|T TT | ⇥
|T TT |X

i=1

R
TT
i (x)

D
TT
i (x)

+
!
ET

|T ET | ⇥
|T ET |X

i=1

R
ET
i (x)

D
ET
i (x)

The goal of f1(x) is to let the meta-heuristic algorithm
minimize the worst-case response time of all tasks while also
shifting the priority of responsiveness more towards either TT
or ET tasks. For e.g., when !

TT = !
ET = 1 both TT and

ET tasks are optimized to have a smaller response time, while
when !

TT = 1 and !
ET = 0 only the TT tasks are optimized.

The function f2(x) is used to penalize solutions that are
not schedulable. The schedulability of time-triggered (TT)
tasks and event-triggered (ET) tasks mapped on each core and
polling server, respectively, are represented by ui(x) and vi(x)
for a given solution x. The penalty factors for unschedulable
TT and ET tasks are denoted by �

TT and �
ET , respectively.

Specifically, a penalty of �TT is added for each core where one
or more TT tasks are not schedulable, and a penalty of �

ET

is added for each core where one or more ET tasks are not
schedulable. This penalty scheme incentivizes the optimization
process to converge quickly toward schedulable solutions. In
this context and given K the number of cores in the target
system, the expression for f2(x) is given by:

f2(x) = �
TT ⇥

KX

j=1

uj(x) + �
ET ⇥

KX

k=1

vk(x)

Genetic algorithms are designed to maximize the fitness
of chromosomes. In the case of minimizing both f1(x) and
f2(x), it becomes necessary to convert the problem from
a minimization problem to a maximization one. This can
be achieved by negating both expressions. The final fitness
function with both terms combined is the following:

f(x) = � [f1(x) + f2(x)] (4)

C. Mutation and crossover functions

A mutation function is a genetic operator that introduces
random changes to an individual’s genetic material (i.e., the
chromosomes) in a population. The mutation function works
by randomly selecting one or more parameters within an indi-
vidual’s chromosome and changing their value in some way.

In the proposed algorithm, mutations are applied to different
task-to-core mappings but can also be applied to, e.g., different
server parameters for the AdvPolling method. Optionally, ET
task priorities can be mutated. The tasks mapping to cores are
mutated with a probability of 1

|⌧TT | for TT tasks and 1
|⌧ET |

for ET tasks, so that, on average, the mapping of one TT task
and one ET tasks are mutated for each iteration. To mutate the
mapping of a single task, a different core is randomly picked
amongst the cores the fulfill the mapping constraints. For the
Advanced Polling solution, polling servers are mutated with a
probability of 1

K where K is the number of cores in the system.
The mutation involves either adding a random number picked
from a uniform distribution in the range of (�1� 9µ, 1+9µ)
or multiplying for a random number in the range of (0.5, 1.5),
either the budget or the period.

Crossover is a fundamental genetic operator that combines
genetic information from two parent solutions to create a
new offspring solution. The choice of crossover function
can significantly impact the convergence speed, diversity of
the population, and ultimately the quality of the solutions
obtained. The proposed crossover function combines different
task-to-core mappings by selecting the core ID of each task
from either one of the parent solutions, with equal probability.
Additionally, for the Advanced Polling approach, each Polling
Server parameter of the offspring solution is picked from one
of the parent solutions, with equal probability.

D. Generating initial mappings

Four different methods of task-to-core mapping initializa-
tion are considered to generate initial task-to-core mappings
for both TT and ET tasks. These methods are as follows:

1) Random mapping: Task-to-core mappings are generated
randomly without regard to the current workload on each
core. This method is not recommended as it may result
in imbalanced workloads on the cores and produce many
solutions that are not schedulable. On the other hand, it creates
an initial population that has high diversity, which might help
the optimization algorithm to find better solutions.

2) Laxity round-robin mapping: In this method, task-to-
core mappings are generated using a round-robin approach
where tasks are assigned to cores in a cyclic manner. The
laxity (or slack time) of a task is defined as the difference
between its deadline and its cost (or duration): Li = Di�Ci.
The task with the highest laxity is selected from the set of
tasks that can be executed on the core. This method is simple
to implement and can result in a good initial workload balance.
However, it does not take into account the utilization of the
tasks, which may result in sub-optimal performance.

3) Load balancing mapping: In this method, task-to-core
mappings are generated to balance the core utilization. This
method can result in a good workload balance between the
system cores, but it may not take into account the deadlines
of the tasks, which could result in missed deadlines.

4) Delay minimizing mapping: The delay-minimizing task-
to-core mapping initialization algorithm sorts all tasks in
decreasing order of duration and then assigns each task to the
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core that would minimize the total delay of execution caused
by existing tasks on that core. For each task, the algorithm
calculates the delay that would be caused by mapping the
task on each core by summing the duration of all tasks on the
core that would be handled first by EDF. The algorithm then
assigns the task to the core where the delay of execution is
minimum. This ensures that the tasks are assigned to cores in a
way that minimizes the total delay caused by already existing
tasks, which can be beneficial for meeting task deadlines.

VI. EXPERIMENTS

A. Single-core comparison of polling approaches

For the single-core experiments (Fig. 2), we compare SPoll
and AdvPoll against Slot-Shifting [29], and Holistic schedul-
ing [11] in terms of schedulability (left y-axis) and runtime
(right logarithmic y-axis) for constrained-deadline (left sub-
plot) and arbitrary-deadline (right sub-plot) ET tasks. We
implemented SPoll such that the polling period of each ET task
does not lead to an explosion in the hyperperiod HP , selecting
the largest value lower than the ideal polling period for which
the new hyperperiod is smaller than 4HP . We implemented
AdvPoll as a greedy search by iterating through 200 possible
equidistant polling task periods T p up to the hyperperiod of TT
tasks. After finding the polling task(s), we use a simple LLF
simulation until the hyperperiod for both SPoll and AdvPoll
to generate the static TT schedule. We also implemented the
offline schedulability test for ET tasks of Slot-Shifting [29] and
used an LLF simulation to generate the initial TT schedule
with TT tasks as input. We note that we cannot directly
compare to holistic scheduling [11] since their schedulability
test does not work for our more generic sporadic ET task
model. Nevertheless, we implemented the ALAP/ASAP-based
scheduling heuristic from [11], replacing the original schedu-
lability test for periodic tasks with a simulation-based test for
sporadic tasks. For arbitrary deadlines, we use min(Di, Ti) for
AdvPoll, SlotShifting, and the schedulability test of holistic
scheduling, since they do not support arbitrary deadlines. We
use 30 TT and 20 ET tasks per task set with periods selected
from the set {5, 10, 20, 40, 80}ms which correspond to periods
found in a real-world automotive use-case. We generated 100

Fig. 3: Comparison of greedy AdvPoll vs. optimized AdvPoll
vs. Holistic scheduling.

task sets per test case and use a microtick of 250µs. For the
constrained ET deadline test cases, Di is uniformly selected
in the upper half of the interval [Ci, Ti], and for arbitrary ET
deadlines, we use Di 2 [Ci, 5 · Ti]. We keep the TT task
utilization at 20% and increase the utilization of ET tasks as
seen on the x-axis of Fig. 2. These experiments were run on
an Apple MacBook M1 Pro 10-core (3.12GHz) / 16GB RAM.

We see in Fig. 2 that SPoll is very fast but only has
acceptable schedulability (left y-axis) for low system utiliza-
tion or when considering arbitrary deadlines. For constrained
deadline ET tasks, SPoll does not perform very well in terms
of schedulability, while AdvPoll can schedule even systems
with high overall utilization. For arbitrary deadlines, SPoll
performs better than AdvPoll and even Holistic scheduling for
up to 50% system utilization while being significantly faster
(right logarithmic y-axis). For highly utilized systems, the
holistic method is better than the greedy search of AdvPoll but
at the cost of a very significant runtime increase (avg 200 ms
for AdvPoll vs. avg 3.5 sec for Holistic Scheduling). We note
that holistic scheduling cannot be directly applied to sporadic
task sets, and hence we have to use a very exact but very
computationally expensive schedulability test which results in
slightly better schedulability for highly-utilized systems at the
expense of a significantly increased runtime (by a factor of
100 � 1000). This increased runtime may especially hinder
the solution quality when adding the task-to-core allocation
dimension to the scheduling problem. We show that we can
improve the schedulability of AdvPolling by including the
server design problem in the genetic algorithm (c.f. Sec. VI-B).

B. Integration of allocation and AdvPoll server design

We compare the schedulability of three methods when
applied to a multi-core setting. The task-to-core mapping is
optimized using our genetic algorithm, while the integration
of TT and ET tasks is managed using (a) AdvPoll with server
parameters optimized by a greedy search (c.f. Sec VI-A), (b)
AdvPoll with server parameters optimized using a genetic
algorithm, and (c)the holistic method [11] with the simulation-
based schedulability test (c.f. Sec VI-A). The task sets used
in this experiment comprise 30 TT tasks and 30 ET tasks, tar-
geting a two-core system with U

TT = 60% and U
TT = 70%



Fig. 4: Schedulability after 2500 iterations of optimization on
different task sets with 8 cores and varying U

TT and U
ET

and varying degrees of UET utilization. For each task set, the
optimization process runs for a maximum time interval of one
second, after which it is halted.

Results shown in Fig. 3 indicate that the AdvPolling meth-
ods exhibit similarly high schedulability rates, even though the
greedy search for server parameters is significantly slower.
This is because, at each optimization iteration, optimal pa-
rameters must be re-evaluated. In this experimental setup,
the holistic method demonstrates a lower schedulability rate
compared to the AdvPolling approaches, particularly when
dealing with high TT utilizations as tested in this experiment.
To achieve similar results to the other methods, the holistic
method might require more optimization iterations or an
extended optimization time.

C. Schedulability performance

Before, we evaluated the schedulability of the proposed
polling methods for single-core systems. We now assess the
schedulability of the proposed genetic approach for multi-
core systems when TT and ET tasks are integrated using
the proposed polling mechanisms. In order to examine this,
the schedulability percentage is calculated for 3400 task sets
with varying TT and ET task set utilization, denoted as
U

TT and U
ET , respectively. Each task set consists of 120

constrained-deadline TT tasks and 120 arbitrary-deadline ET
tasks running on an 8 core platform. The genetic algorithm

Fig. 5: Fitness value while optimizing solutions using different
task-to-cores mapping initializations (higher is better).

is set up with a population size of N = 50, a selection
probability of 1.0, a linearly increasing round count schedule
of k(t0) = 1 + (0.05 ⇤N � 1) ⇤ t0 and a linearly decreasing
mutation schedule of µ(t0) = 1 � t0 (where t0 is the work
done defined as t0 = i

maxIterations ). The optimization process
is executed for a total of 2500 iterations on each task set.
A solution is deemed valid if the algorithm can find a valid
schedule for all of the 8 cores (i.e., both TT and ET tasks
meet their deadlines on all cores).

Fig. 4 presents the experimental results in seven different
subplots, each corresponding to a group of task sets with
distinct TT task utilization U

TT . The optimized AdvPoll
solution exhibits a high schedulability percentage, averaging
close to 100% schedulability rate on these challenging task
sets. In cases where the task set comprises TT tasks that
consume a significant portion of the available resources (e.g.,
when U

TT = 70%), the schedulability rate can drop to an
average of 55% given the specified number of iterations. We
see that the proposed optimization technique can achieve a
good schedulability rate on a multi-core system, even when
employing a simple integration method for TT and ET tasks
like the SPoll approach. The optimized AdvPoll solution
performs particularly well, even for highly utilized systems.

D. Impact of mapping initializations on the optimization

We evaluate the impact of different task-to-core mapping
initializations on the convergence of the optimization process
using SPoll (c.f Sec. IV-A) and AdvPoll (c.f Sec. IV-B). We
use our genetic algorithm described in Sec. V to optimize
the task-to-core mapping. To improve schedulability, we also
optimize, as part of the genetic algorithm, the polling server
parameters of AdvPoll instead of using the greedy search
described in Sec. VI-A. Please note that we search only for
the server period T

p since the deadline of the polling server
is assumed to be equal to the period and the server budget
C

p is set to C
p = b(1 � U

TT ) · T pc. As before, we set up
the genetic algorithm with a population size of N = 50, a



Cores 1 2 3 4 5 6 7 8
Speedup 1 1.93 2.73 3.74 4.12 4.52 5.03 5.33

TABLE I: Speedup with increasing number of cores.

selection probability of 1.0, a linearly increasing round count
schedule of k(t0) = 1 + (0.05 ⇤ N � 1) ⇤ t0 and a linearly
decreasing mutation schedule of µ(t0) = 1 � t0 (where t0 is
the work done defined as t0 = i

maxIterations ).
The four mapping initializations discussed in Sec. V-D are

compared for both approaches. The task set used for the
experiment consists of 120 constrained-deadline TT tasks and
120 arbitrary-deadline ET tasks running on a 8 core system.
The optimization process is executed for a total of 2500
iterations. Fig. 5 displays the best solution fitness curve for
each experimental setup, averaged over 50 optimization runs.

As can be seen, employing various mapping initialization
heuristics leads to different convergence rates during the
optimization process. When optimizing the multi-core sched-
ule using AdvPoll, the Load Balancing mapping initializa-
tion outperforms the others by discovering superior solutions
with fewer iterations. Conversely, when utilizing the SPoll
approach, the Delay Minimizing mapping heuristic yields
the best results. These findings highlight the significance of
selecting the task-to-core mapping initialization heuristic in
the optimization process depending on the underlying polling
method used. The choice of heuristic plays a crucial role in
the convergence rate and the quality of the resulting solution.

E. Scalability

We have selected a genetic approach with k-tournament
selection because it is highly parallelizable. Through paral-
lelization, our method can leverage the computational power
of multiple cores, leading to better solutions and improved
scalability, especially for larger and more complex target
systems. We have investigated the degree of speedup achieved
by distributing the computation over multiple cores. We used
a task set consisting of 240 TT tasks and 160 ET tasks running
on an 8 core system. The optimization was done over 10000
iterations. The experiment was conducted on a Mac Mini with
an M2 CPU and 16GB of RAM. Results show that we can
achieve a speedup of up to 5.3x when increasing the number
of cores to 8 (c.f. Table I). However, the speedup begins to
taper off as more cores are used, which can be attributed to the
overhead caused by thread synchronization. For more complex
problems, the parallel efficiency improves, as the time required
to evaluate, combine, and mutate chromosomes outweighs the
delay caused by thread synchronization.

VII. CONCLUSION

We have addressed the problem of integrating event- and
time-triggered tasks in partitioned multi-core real-time sys-
tems. We have introduced two polling-based approaches,
called simple and advanced polling, that guarantee both TT
and ET task deadlines within single core systems. Further-
more, we have proposed a genetic algorithm for the task-to-
core allocation problem that can be applied to both polling

methods (as well as to other well-known single-core ap-
proaches). We have shown that the polling-based approaches
scale well in terms of schedulability and runtime compared to
existing methods. We have also demonstrated that the alloca-
tion heuristic can achieve good solutions for fully partitioned
systems and that the server design problem of the advanced
polling approach can be integrated into the allocation heuristic
to achieve better solutions in terms of schedulability.
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