
End-to-End Schedulability of Virtualized Distributed
Time-Triggered Systems

Jan Ruh
TTTech Computertechnik AG

Vienna, Austria
jan.ruh@tttech.com

Silviu S. Craciunas
TTTech Computertechnik AG

Vienna, Austria
silviu.craciunas@tttech.com

ABSTRACT
In most distributed safety-critical applications, real-time tasks ex-
ecuting on multi-core multi-SoC platforms communicate critical
messages over a deterministic communication backbone. Virtual-
ization is increasingly used in such systems to enhance scalability
and enforce spatial isolation while still maintaining the timing
properties of critical tasks. Using time-triggered (TT) scheduling
on the computation, the communication, and the virtualization
layer enables strict end-to-end timing guarantees with tight latency
and jitter bounds. In this paper, we introduce for the first time a
formal system and scheduling model to harmonize these different
layers of the global scheduling problem for virtualized distributed
TT real-time systems. We also describe two offline algorithms to
generate TT schedules for all layers that guarantee end-to-end la-
tency requirements. The two schedulers offer trade-offs between
schedule synthesis runtime and virtualization overhead. We derive
synthetic benchmarks from real-world system properties to show
the scalability and schedulability of our approaches.

CCS CONCEPTS
• Computer systems organization→ Reliability.

KEYWORDS
Time-triggered scheduling, Hypervisor, Real-time.

ACM Reference Format:
Jan Ruh and Silviu S. Craciunas. 2024. End-to-End Schedulability of Vir-
tualized Distributed Time-Triggered Systems. In The 32nd International
Conference on Real-Time Networks and Systems (RTNS 2024), November 7–8,
2024, Porto, Portugal. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3696355.3696364

ACKNOWLEDGMENTS
The project AIMS5.0 is supported by the Chips Joint Undertaking
and its members, including the top-up funding by National Funding
Authorities from involved countries under grant agreement no.
101112089.

RTNS 2024, November 7–8, 2024, Porto, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in The 32nd International
Conference on Real-Time Networks and Systems (RTNS 2024), November 7–8, 2024, Porto,
Portugal, https://doi.org/10.1145/3696355.3696364.

1 INTRODUCTION
Time-triggered (TT) distributed systems are often used in highly
critical real-time domains like aerospace [5, 23] and appear pro-
gressively in other safety-critical applications from the automo-
tive [5, 20, 41, 58], and railway [50] to industrial domains [6, 30], due
to its benefits in terms of determinism, stability, and compositional-
ity [20, 42, 44, 45, 58, 64]. In a recent survey of applied real-time sys-
tems, 68% industrial practitioners have responded that static offline
scheduling is used to improve timing predictability, while 54% em-
ploy TT scheduling in their systems [3]. In most distributed safety-
critical applications, real-time tasks execute on multi-core multi-
SoC platforms and communicate critical messages over a determin-
istic communication backbone. TT scheduling is used on one or
more of these layers: on the computation layer [14, 46, 47], the com-
munication layer (via e.g., Flexray [55], TTP [36], TTEthernet [62],
or TSN [28]), or even on the system virtualization layer [49, 63].
TT scheduling on the hypervisor level, a.k.a. time partitioning, has
been extensively studied [24, 25, 33, 49, 63] due to its relevance
for safety-critical and mixed-critical system architectures. While
TT scheduling on any one of the computation and communication
layers will increase the timing predictability of the system, having
a TT scheduling approach on all layers, i.e., from task execution
in the guest operating system, via the virtual CPUs (VCPUs) in
the hypervisor, to the network, enables strict end-to-end timing
guarantees with tight latency and jitter bounds. Moreover, utilizing
TT scheduling on all layers enables a precise coordination of task
execution and message transmission across the entire distributed
system. The strict design-time end-to-end guarantees enabled by
TT scheduling on all layers help in the certification process and
offer mathematical guarantees for hard real-time systems.

Despite the technological maturity of time-partitioning [24, 25,
33, 49, 63] and its integration with time-triggered communica-
tion [10, 11, 53, 54, 66], we are still short of a formal definition
of what constitutes a correct schedule in a virtualized distributed
TT system. As a result, in this paper, we introduce for the first time
a formal system and scheduling model to harmonize the different
dimensions of the global scheduling problem, i.e., the computation,
communication, and virtualization layers, for virtualized distributed
TT systems. Moreover, we generalize the correctness constraints
of the TSN network scheduling layer to non-strictly-periodic com-
munication slots. Then, we introduce two offline schedulers to
generate TT schedules for all layers that guarantee end-to-end
latency requirements and offer trade-offs between schedule syn-
thesis runtime and virtualization overhead. The first scheduler,
called iSMT, encodes the problem into a Satisfiability Modulo The-
ories (SMT) [4, 17] formulation and minimizes virtualization over-
head by solving the problem incrementally. The second approach,

https://doi.org/10.1145/3696355.3696364
https://doi.org/10.1145/3696355.3696364
https://doi.org/10.1145/3696355.3696364

RTNS 2024, November 7–8, 2024, Porto, Portugal Jan Ruh and Silviu S. Craciunas

called iSMT-EDF, uses iSMT to schedule the network layer and
improves the scalability of iSMT at the expense of increased virtu-
alization overhead by simulating an Earliest-Deadline-First (EDF)
schedule with a simple heuristic to find task and VCPU schedules.
We derive synthetic benchmarks from real-world system properties
to show the scalability and schedulability of our approaches.

We describe related work in Section 2 and introduce the system
model in Section 3. We formulate the correctness constraints in
Section 4, followed by a description of our scheduling algorithms
(Section 5) and experimental evaluation (Section 6). We conclude
the paper in Section 7.

2 RELATEDWORK
DREAMS [2] describes building blocks for mixed-critical system
architectures integrating multicore systems-on-a-chip intercon-
nected by on-and off-chip networks. One such building block is a
virtualization layer featuring time-partitioning via the Xtratum hy-
pervisor [16]. Gala et al. [25] make a case for TT VCPU scheduling
to enable hosting real-time applications in private clouds. They de-
scribe time-triggered scheduling for the Linux kernel utilizing it to
dispatch VCPUs according to a static schedule table implementing
TT VMs. Time partitioning is also present in the commercially avail-
able PikeOS microvisor1 [24, 33, 49, 63]. R. Kaiser [33] proposed a
scheduler featuring dedicated sub-schedulers for real-time and non-
real-time VMs. For real-time VMs, the hypervisor differentiates TT,
periodic, event-driven, and sporadic VMs. VM priorities introduce
precedence rules so that the hypervisor always dispatches real-time
before non-real-time VMs whereas the precedence between real-
time VMs remains configurable, i.e., it is possible to define which
event-driven VMs may preempt a specific TT VM. Two white pa-
pers [49, 63], elaborate on TT operation of PikeOS. H. Theiling [63]
reports activities in projects funded by the European Union, explor-
ing the integration of TT off- and on-chip communication and TT
VMs. He described howTT operation requires synchronization slots
to align VM execution with the communication schedule. Motzkus
and Oezer [49] describe PikeOS’s scheduler using background and
foreground time-partitions, which has been patented in [24], and
how it enables EN 50128 certified TT multicore scheduling.

Kerstan et al. [34] describe how to transform periodic tasks to
guarantee their timely execution inside single time slot periodic
partitions [48] using EDF or rate monotonic (RM). The approach
is not applicable to multiple time slot periodic partitions [48] and
does not address end-to-end timing requirements as they arise in
modern distributed real-time systems. In [51], the authors explore
constraints arising from scheduling a fully TT virtualized system,
i.e., including VMs and tasks. The resulting overlapping constraint
for fully TT virtualized systems and derived optimization criteria
constitute necessary yet not sufficient constraints for the correct-
ness of a hierarchical schedule table.

Another related research direction is the hierarchical schedul-
ing framework [40, 43, 60] which is based on abstracting periodic
virtual resources that are guaranteed a certain bounded service
on the physical resource but this guarantee is arbitrarily allocated

1Gernot Heiser coined the term microvisor emphasizing the convergence of modern
microkernel and hypervisor architectures [26].

over the resource period [21, 59]. Originally, hierarchical schedul-
ing research was focused on global schedulability analysis with
local scheduler abstractions under EDF or FP (e.g. [59]). In [39]
the authors present the use of hierarchical scheduling in Xen in
which the guest OS domains are scheduled using periodic servers.
In [65], a two-level hierarchical scheduler with real-time guaran-
tees is implemented in the L4/Fiasco micro-kernel with L4Linux
as a virtual machine (VM). Dependencies between tasks in differ-
ent partitions are considered in [32] such that on the hypervisor
level, the schedule fragments can be assigned to time partitions
in such a way that both real-time requirements and precedence
relations are maintained. Our work is the first to consider end-to-
end latency constraints in time-triggered virtualized environments,
harmonizing the time-triggered execution on different levels of the
scheduling heirarchy.

3 SYSTEM MODEL
We model a virtualized distributed real-time system as a directed
graph 𝐺 (V,L) in which the vertices V = V𝑁 ⋃V𝑆 are end-
systems (ES)V𝑁 and switches (SW)V𝑆 , and the edgesL ⊂ V×V
represent the bi-directional, full-duplex physical links between the
nodes. Each ES 𝑛 ∈ V𝑁 can host a finite set of virtual machines
(VMs) sharing 𝑛’s hardware resources. To harmonize the notation,
we say that a native node hosts a single VM without virtualization
overhead. VMs execute a finite set of dependent and independent
tasks using time-triggered (TT) scheduling. Dependent tasks com-
municate with each other via streams scheduled on a TSN backbone.

We assume an end-system is a symmetric multiprocessing (SMP)
platform with a table-driven dispatcher in the hypervisor and the
VMs. The hypervisor dispatches VMs’ VCPUs on the available
physical processor cores, and the guest operating systems dispatch
periodic TT tasks on VCPUs according to coordinated precomputed
schedule tables. When considering schedule tables of different ES,
their dispatchers operate on distinct yet synchronized timelines
that depend on the underlying clocks’ granularity and the clock syn-
chronization precision. Typically, a node 𝑛 ∈ V clock’s granularity
(microtick) 𝜇𝑛 > 0 equals the inverse of its oscillator’s frequency.

The macrotick (slot length) 𝜂𝑛 divides the scheduling timeline
on the guest OS and hypervisor levels of a node 𝑛 ∈ V into equal
slices, representing the smallest granularity for scheduling [31, 35].
Typically, the macrotick is either equal or a multiple of the microtick
𝜇𝑛 . A static schedule on a node 𝑛 ∈ V consists of a set of slots {[𝑡 ·
𝜂𝑛, (𝑡 +1) ·𝜂𝑛)} that repeats after a time interval called the schedule
cycle or hyperperiod. Note the trade-off between schedulability
and scheduler runtime when choosing the macrotick, as smaller
values will increase schedulability, but the search for the schedule
table (and the size of the schedule table and the context-switching
overhead) may increase. To not overburden the notation, we assume
that ∀𝑛 ∈ V : 𝜂𝑛 = 𝜇𝑛 , noting that a generalization to macroticks
that are a multiple of the microtick is trivial (c.f. Section 4.1).

3.1 Network and Communication Model
The communication backbone is a time-sensitive network (TSN) [28]
with IEEE 802.1Qbv [27] scheduled traffic and IEEE 802.1As-rev [29]
clock synchronization capabilities. IEEE 802.1Qbv [27] defines a

End-to-End Schedulability of Virtualized Distributed Time-Triggered Systems RTNS 2024, November 7–8, 2024, Porto, Portugal

time-aware gate mechanism that opens or closes egress ports, al-
lowing or denying the forwarding of frames. At runtime, the state
of the time-aware gate changes according to a precomputed cyclic
schedule table (c.f. [13]) known as a Gate Control List (GCL), trig-
gered by the local clock of the device [12]. To ensure a common
time base, the local clocks of the devices are synchronized with the
IEEE 802.1AS-rev protocol within a known clock synchronization
precision. The hypervisor on compute nodes virtualizes its local
clock granting itself and all hosted VMs access to the fault-tolerant
network time [57] following a dependent clock paradigm [9, 56].
Note that our method also works for other time-triggered networks
like TTEthernet (SAE AS6802) [62], with changed network correct-
ness conditions (c.f. Section 4.4.2), as described in [15]. We model
the network and communication streams similarly to [13].

A stream 𝑠𝑖 ∈ S is a communication requirement with period
𝑇𝑖 from a sender 𝑎 ∈ V to a receiver 𝑏 ∈ V . For each stream, we
assume a predefined route from sender to receiver via intermediate
nodes 𝜈1, ..., 𝜈𝑚 ∈ 𝑁 , and encode it as a finite ordered set

𝑠𝑖 = {(𝑎, 𝜈1), (𝜈1, 𝜈2), ..., (𝜈𝑚−1, 𝜈𝑚), (𝜈𝑚, 𝑏)}.

Each stream 𝑠𝑖 ∈ S periodically releases stream jobs that must
be transmitted within their respective period instances. Contrary to
previous work [13, 52, 61], we assume a more generic non-strictly
periodic model, i.e., each frame of a stream can be transmitted at a
different time in each period instance. We denote the finite ordered
set of jobs of a stream 𝑠𝑖 that are released until the hyperperiod
with J𝑥𝑦

𝑖
. We use the superscript 𝑥𝑦 to denote the instance of the

stream on each communication link (𝑥,𝑦) ∈ 𝑠𝑖 .
Each stream 𝑠𝑖 ∈ S has a payload with a given size 𝑆𝑖 , which can

also be larger than the maximum transmission unit (𝑀𝑇𝑈), result-
ing in a set of frames, each with size less than or equal to the𝑀𝑇𝑈 .
Hence, each stream job 𝐽

𝑥𝑦

𝑖 𝑗
∈ J𝑥𝑦

𝑖
can feature multiple frames of

the same stream since the total payload of the stream can exceed
the𝑀𝑇𝑈 , which we denote with F 𝑥𝑦

𝑖 𝑗
where |F 𝑥𝑦

𝑖 𝑗
| = ⌈ 𝑆𝑖

𝑀𝑇𝑈
⌉. Each

frame 𝑓
𝑥𝑦

𝑖 𝑗𝑘
∈ F 𝑥𝑦

𝑖 𝑗
has a transmission duration 𝑓

𝑥𝑦

𝑖 𝑗𝑘
.𝐿 when trans-

mitted over a link (𝑥,𝑦) ∈ 𝑠𝑖 with a given speed 𝑠𝑥,𝑦 in bits/second.
The transmission duration is computed as 𝑓 𝑥𝑦

𝑖 𝑗𝑘
.𝐿 =

𝑆𝑖 𝑗 ·109 ·8
𝑠𝑥𝑦 , where

𝑆𝑖 𝑗 is the size of the frame 𝑓
𝑥𝑦

𝑖 𝑗𝑘
in bytes. The transmission time

of a frame 𝑓
𝑥𝑦

𝑖 𝑗𝑘
∈ F 𝑥𝑦

𝑖 𝑗
on link (𝑥,𝑦) ∈ 𝑠𝑖 is denoted with 𝑓

𝑥𝑦

𝑖 𝑗𝑘
.𝜙

relative to the period. The absolute scheduling offset of a frame
𝑓
𝑥𝑦

𝑖 𝑗𝑘
in period instance 𝑗 is 𝑓 𝑥𝑦

𝑖 𝑗𝑘
.𝜙 + 𝑗 ·𝑇𝑖 .

3.2 Task Model
A periodic real-time (RT) task 𝜏𝑖 is defined by the tuple
(𝑅𝑖 , 𝐷𝑖 ,𝐶𝑖 ,𝑇𝑖 , 𝐴𝑖) in which 𝑅𝑖 is the release time, 𝐷𝑖 is the rela-
tive deadline, 𝐶𝑖 is the WCET, 𝑇𝑖 is the period, and 𝐴𝑖 is the task’s
resource affinity. We denote the set of all periodic RT tasks with T .
Switching from one task to another on a core 𝑐 introduces a context-
switching overhead equal to 𝛿𝜏 (𝑐).

Each task 𝜏𝑖 ∈ T periodically releases jobs that must complete
execution within their deadline. For the tasks, we again assume a
non-strictly periodic model, i.e., each task job can be executed at a
different time in each period instance. We denote the finite ordered
set of jobs of a task 𝜏𝑖 that are released until the hyperperiod withJ𝑖 .
Since we allow preemption, each job 𝐽𝑖 𝑗 ∈ J𝑖 is comprised of a finite

N
od

e
2

N
od

e
1

V
C

PU
s

Time Sensitive Network

V
C

PU
s

Figure 1: System featuring two nodes with six VMs

list of job segments X𝑖 𝑗 . A job segment 𝑥𝑖 𝑗𝑘 ∈ X𝑖 𝑗 is defined by its
offset 𝑥𝑖 𝑗𝑘 .𝜙 and its length 𝑥𝑖 𝑗𝑘 .𝐿, where the offset is the placement
of the segment relative to the period. The absolute scheduling offset
of a segment 𝑥𝑖 𝑗𝑘 in the period instance is 𝑥𝑖 𝑗𝑘 .𝜙 + 𝑗 ·𝑇𝑖 . Please note
that the number and size of segments are part of the scheduling
problem and are not fixed (c.f. Section 5). For this section, we are
only interested in the correctness constraints of an existing solution,
hence we assume a given number of segments for each job.

A pair of periodic RT tasks communicate with each other via a
TSN stream. For two tasks 𝜏𝑖 , 𝜏 𝑗 ∈ T , we indicate a data dependency
between, i.e., 𝜏 𝑗 reads input data from 𝜏𝑖 via flow 𝑠𝑘 ∈ S, by writing
𝜏𝑖

𝑠𝑘−−→ 𝜏 𝑗 . The end-to-end latency of a data dependency is expressed
as 𝐸 (𝜏𝑖

𝑠𝑘−−→ 𝜏 𝑗). We assume single-rate dependencies, where the
periods of sender and receiver tasks, as well as the stream period, are
identical. A more general multi-rate dependency [7, 8] is possible
but has to be explicitly specified in terms of dependencies between
individual task jobs and frame instances. To simplify the notation,
we assume that multi-rate dependencies have been broken down
into single-rate job-level dependencies, e.g. via the heuristic in [7, 8].

While we only consider periodic tasks, we note that sporadic
tasks can be readily integrated into time-triggered scheduling via a
second-level scheduler [22, 31, 46, 54]. Aperiodic, best-effort tasks
can run in the background (e.g., via bandwidth servers [1]) when-
ever there is an idle slot in the TT schedule or there is slack in the
system via TT tasks finishing earlier than their WCET assumption.

3.3 System Virtualization Model
We assume that a host node 𝑛 ∈ V is an SMP system, where C𝑛

denotes node 𝑛’s set of cores that share a main memory. On each ES
node 𝑛 ∈ V , multiple TT VMs are running that share the physical
compute and memory resources but have access to a dedicated
network interface card (NIC) connected to the TSN backbone (c.f.
Figure 1). Each VM is modeled as a set of VCPUs. The set of all
VCPUs running on a core 𝑐 is defined using P(𝑐), where each VCPU
is assigned to run on exactly one physical core, with no migration
allowed at runtime.

Akin to task jobs, we say that a TT VCPU 𝜌𝑖 ∈ P(𝑐) is comprised
of a set of segments Z𝑖 , where we define each segment 𝑧𝑖 𝑗 ∈ Z𝑖

by an offset 𝑧𝑖 𝑗 .𝜙 and a length 𝑧𝑖 𝑗 .𝐿. Contrary to tasks, VCPU
segments do not have a period and their offset is relative to the
hyperperiod. Switching from one VCPU to another on a core 𝑐
introduces a switching overhead equal to 𝛿𝜌 (𝑐). Periodic RT tasks

RTNS 2024, November 7–8, 2024, Porto, Portugal Jan Ruh and Silviu S. Craciunas

Symbol Level Description
𝐺 (V,L) System Distributed system with nodesV and links L
V = V𝑁 ⋃V𝑆 System End-systems (ES)V𝑁 and switches (SW)V𝑆

L ⊂ V ×V System Bi-directional, full-duplex links between nodes
𝜇𝑛 System Microtick granularity of node 𝑛 ∈ V
𝜂𝑛 System Scheduling granularity (Macrotick) of node 𝑛 ∈ V
𝑐 ∈ C𝑛 System A core of the set of all cores C𝑛 of node 𝑛
𝛿𝜏 (𝑐) System Task context-switching overhead on core 𝑐
𝛿𝜌 (𝑐) System VCPU switching overhead on core 𝑐
Π Network Clock synchronization precision in the network
Δ𝑥𝑦 Network Propagation delay of link (𝑥,𝑦)
S Network Set of all streams in the system
𝑠𝑖 ∈ S Network Stream with period 𝑇𝑖 and size 𝑆𝑖
J𝑥𝑦

𝑖
Network Set of jobs of a stream 𝑠𝑖 on link (𝑥,𝑦) ∈ L.

F 𝑥𝑦

𝑖 𝑗
Network Set of frames of a stream job 𝐽

𝑥𝑦

𝑖 𝑗
∈ J𝑥𝑦

𝑖

𝑓
𝑥𝑦

𝑖 𝑗𝑘
∈ F 𝑥𝑦

𝑖 𝑗
Network Frame 𝑘 of job 𝐽

𝑥𝑦

𝑖 𝑗
of stream 𝑠𝑖 on link (𝑥,𝑦)

𝑓
𝑥𝑦

𝑖 𝑗𝑘
.𝜙 Network Scheduling offset of frame 𝑓 𝑥𝑦

𝑖 𝑗𝑘
on link (𝑥,𝑦)

𝑓
𝑥𝑦

𝑖 𝑗𝑘
.𝐿 Network Transmission duration of frame 𝑓 𝑥𝑦

𝑖 𝑗𝑘
on link (𝑥,𝑦)

𝜏𝑖 ∈ T Task A periodic real-time task from the set of tasks T
𝜏𝑖

𝑠𝑘−−→ 𝜏 𝑗 Task Data dependency between 𝜏𝑖 and 𝜏 𝑗 via stream 𝑠𝑘

𝐸 (𝜏𝑖
𝑠𝑘−−→ 𝜏 𝑗) Task The end-to-end latency of dependency 𝜏𝑖

𝑠𝑘−−→ 𝜏 𝑗

𝑅𝑖 , 𝐷𝑖 ,𝐶𝑖 ,𝑇𝑖 , 𝐴𝑖 Task Release, deadline, WCET, period, affinity
𝐽𝑖 𝑗 ∈ J𝑖 Task The job 𝑗 from the set of all jobs J𝑖 of task 𝜏𝑖
X𝑖 𝑗 Task The finite set of job segments of job 𝐽𝑖 𝑗

𝑥𝑖 𝑗𝑘 ∈ X𝑖 𝑗 Task Job segment 𝑘 of the segment set X𝑖 𝑗 of job 𝐽𝑖 𝑗

𝑥𝑖 𝑗𝑘 .𝜙 Task Scheduling offset of task segment 𝑥𝑖 𝑗𝑘 of 𝜏𝑖
𝑥𝑖 𝑗𝑘 .𝐿 Task Size of task segment 𝑥𝑖 𝑗𝑘 of task 𝜏𝑖
P(𝑐) Hypervisor The set of all VCPUs running on a core 𝑐
𝜌𝑖 ∈ P(𝑐), Z𝑖 Hypervisor A TT VCPU comprised of a set of segmentsZ𝑖

T (𝜌𝑖) Hypervisor The set of real-time tasks allocated to VCPU 𝜌𝑖

Z𝑖 Hypervisor The set of all segments of VCPU 𝜌𝑖

𝑧𝑖 𝑗 ∈ Z𝑖 Hypervisor Segment 𝑗 from the segment set Z𝑖 of VCPU 𝜌𝑖

𝑧𝑖 𝑗 .𝜙 Hypervisor Scheduling offset of segment 𝑧𝑖 𝑗 of VCPU 𝜌𝑖

𝑧𝑖 𝑗 .𝐿 Hypervisor Size of VCPU segment 𝑧𝑖 𝑗 of VCPU 𝜌𝑖

Table 1: Summary of notations

require assignment to TT VCPUs. We denote the set of periodic
RT tasks allocated to a virtual node’s TT VCPU 𝜌 with T (𝜌). Note
that while a VCPU can be assigned to any core in its affinity list, all
VCPUs of a VM have to be assigned to cores of the same physical
node. For the correctness constraints, we assume that the schedule
and the assignment of VCPUs to cores are known.

4 CORRECTNESS CONSTRAINTS
In this section, we formalize the constraints that define a correct
schedule in the context of a virtualized time-triggered distributed
real-time system. Here, it is essential to differentiate between check-
ing and creating a schedule. For now, we are only interested in the
former and define the constraints such that they are independent
of how the schedules were created. Ideally, we might use the same
constraints, e.g., in an SMT solver, to also create the schedules.
However, SMT-based schedulers are not always feasible for large
systems since the scheduling problem is NP-complete (checking
the correctness of an existing solution can be done in polynomial
time). Please note that, in general, the number and size of task
and VCPU segments, as well as the assignment of tasks to VCPUs
and VCPUs to cores, are part of the scheduling problem and not
fixed. In this section, we are only interested in the correctness
constraints of an existing solution, and hence, we assume a given
number of segments and a given assignment. We show how to solve

the scheduling problem using an incremental SMT approach with
a metaheuristic in Section 5.1 and simulating EDF in Section 5.2.
Also, please note that we express all offsets in microticks on the
respective node. For easier readability, we summarized the formal
notations used in the correctness constraints in Table 1.

4.1 Task Correctness Constraints
We start by defining the correctness constraints of scheduled seg-
ments arising out of task requirements. A schedule for a given set
of tasks is correct if all tasks’ job segments fulfill basic constraints
on their assigned resource. Firstly, job segments must comply with
the limits set by release, deadline, and WCET of their tasks.

Constraint 1 (Release Time and Deadline). Given the virtualized
distributed real-time system defined by the graph 𝐺 (V,L), we have:

∀𝑛 ∈ V,∀𝑐 ∈ C𝑛,∀𝜌 ∈ P(𝑐),
∀𝜏𝑖 ∈ T (𝜌),∀𝐽𝑖 𝑗 ∈ J𝑖 ,∀𝑥𝑖 𝑗𝑘 ∈ X𝑖 𝑗 :
(𝑥𝑖 𝑗𝑘 .𝜙 · 𝜇𝑐 ≥ 𝑅𝑖) ∧ (𝑥𝑖 𝑗𝑘 .𝜙 · 𝜇𝑐 + 𝑥𝑖 𝑗𝑘 .𝐿 ≤ 𝐷𝑖)

Each segment of a task job needs to be at least as long as its
context-switching overhead since, otherwise, tasks do not progress.
Additionally, the sum of the segment sizes of a job is at least as large
as the worst-case execution time of the respective task, including
the context-switching overhead times the number of segments.

Constraint 2 (Job Segment Size Constraint). Given the virtualized
distributed real-time system defined by the graph 𝐺 (V,L), we have:

∀𝑛 ∈ V,∀𝑐 ∈ C𝑛,∀𝜌 ∈ P(𝑐),
∀𝜏𝑖 ∈ T (𝜌),∀𝐽𝑖, 𝑗 ∈ J𝑖 :
(∀𝑥𝑖, 𝑗,𝑘 ∈ X𝑖 𝑗 : 𝑥𝑖, 𝑗,𝑘 .𝐿 ≥ 𝛿𝜏 (𝑐))∧©«

∑︁
∀𝑥𝑖,𝑗,𝑘 ∈X𝑖 𝑗

𝑥𝑖, 𝑗,𝑘 .𝐿 ≥ 𝐶𝑖 + |X𝑖, 𝑗 | · 𝛿𝜏 (𝑐)ª®¬
Moreover, for any pair of tasks assigned to the same resource,

their job segments’ execution windows cannot overlap.

Constraint 3 (Task Overlapping Constraint). Given the virtualized
distributed real-time system defined by the graph 𝐺 (V,L), we have:

∀𝑛 ∈ V,∀𝑐 ∈ C𝑛,∀𝜌1, 𝜌2 ∈ P(𝑐),
∀𝜏𝑖 ∈ T (𝜌1),∀𝜏𝑙 ∈ T (𝜌2),∀𝐽𝑖 𝑗 ∈ J𝑖 ,∀𝐽𝑙𝑚 ∈ J𝑙 ,
∀𝑥𝑖 𝑗𝑘 ∈ X𝑖 𝑗 ,∀𝑥𝑙𝑚𝑛 ∈ X𝑙𝑚, 𝑥𝑖 𝑗𝑘 ≠ 𝑥𝑙𝑚𝑛 :
(𝑥𝑖 𝑗𝑘 .𝜙 · 𝜇𝑐 + 𝑗 ·𝑇𝑖 ≥ 𝑥𝑙𝑚𝑛 .𝜙 · 𝜇𝑐 +𝑚 ·𝑇𝑙 + 𝑥𝑙𝑚𝑛 .𝐿)∨
(𝑥𝑙𝑚𝑛 .𝜙 · 𝜇𝑐 +𝑚 ·𝑇𝑙 ≥ 𝑥𝑖 𝑗𝑘 .𝜙 · 𝜇𝑐 + 𝑗 ·𝑇𝑖 + 𝑥𝑖 𝑗𝑘 .𝐿)

We also have tomake sure that all segments of a task are allocated
to one and the same VCPU.

Constraint 4 (Unique Assignment Constraint). Let P =⋃
∀𝑛∈V,∀𝑐∈C𝑛 P(𝑐) be the set of all TT VCPUs in the distributed

system defined by the graph 𝐺 (V,L), then we have:⋂
∀𝜌∈P

T (𝜌) = ∅.

Moreover, all segments of a task need to satisfy the affinity
constraint, i.e., they need to run on a VCPU assigned to a core from
the set of allowed cores.

End-to-End Schedulability of Virtualized Distributed Time-Triggered Systems RTNS 2024, November 7–8, 2024, Porto, Portugal

Constraint 5 (Affinity Constraint). Given the virtualized distributed
real-time system defined by the graph 𝐺 (V,L), we have:

∀𝑛 ∈ V,∀𝑐 ∈ C𝑛,∀𝜌 ∈ P(𝑐),∀𝜏𝑖 ∈ T (𝜌) : 𝑐 ∈ 𝐴𝑖

4.2 End-to-End Correctness Constraints
Tasks located on distinct nodes may communicate via streams over
the TSN backbone yielding an end-to-end latency constraint that
imposes amaximum delay between the start of a sender task and the
completion time of a receiver task. Network nodes within a deter-
ministic Ethernet network𝐺 (V,L) share a common synchronized
network time characterized by its precision. The clock synchroniza-
tion precision captures the maximum time difference between two
nodes’ local clocks [37]. Hence, the difference between the end of
the execution of the receiving task’s job and the beginning of the
execution of the sending task’s job is less or equal to the given
end-to-end latency minus the clock synchronization precision Π.

Constraint 6 (End-to-End Constraint). Given the virtualized dis-
tributed real-time system defined by the graph 𝐺 (V,L), we have:

∀𝑎, 𝑏 ∈ V,∀𝑐𝑎 ∈ C𝑎,∀𝑐𝑏 ∈ C𝑏 ,∀𝜌𝑎 ∈ P(𝑐𝑎),∀𝜌𝑏 ∈ P(𝑐𝑏),

∀𝜏𝑖 ∈ T (𝜌𝑎), 𝜏𝑙 ∈ T (𝜌𝑏) s.t. 𝜏𝑖
𝑠ℎ−−→ 𝜏𝑙 ,∀𝐽𝑖 𝑗 ∈ J𝑖 ,∀𝐽𝑙𝑚 ∈ J𝑙 :

max
∀𝑥𝑙𝑚𝑛∈X𝑙𝑚

{𝑥𝑙𝑚𝑛 .𝜙 · 𝜇𝑐𝑏 + 𝑥𝑙𝑚𝑛 .𝐿}−

min
∀𝑥𝑖 𝑗𝑘 ∈X𝑖 𝑗

{𝑥𝑖 𝑗𝑘 .𝜙 · 𝜇𝑐𝑎 } ≤ 𝐸 (𝜏𝑖
𝑠ℎ−−→ 𝜏 𝑗) − Π

Furthermore, we have to align the transmission schedule of the
stream 𝑠𝑘 along its route to the sender and receiver task schedule.
Here, we assume that the frame is buffered in the network stack
until the message is ready to be sent on the TSN network. The
propagation delay Δ𝑥𝑦 describes the time it takes a frame to travel
on the physical medium of a link from the source to the destination.

Constraint 7 (Task Alignment Constraint). Given the set of streams
S and the virtualized distributed real-time system defined by the
graph 𝐺 (V,L), we have:

∀𝑎, 𝑏 ∈ V,∀𝑐𝑎 ∈ C𝑎,∀𝑐𝑏 ∈ C𝑏 ,∀𝜌𝑎 ∈ P(𝑐𝑎),∀𝜌𝑏 ∈ P(𝑐𝑏),

∀𝜏𝑖 ∈ T (𝜌𝑎), 𝜏 𝑗 ∈ T (𝜌𝑏) s.t. 𝜏𝑖
𝑠ℎ−−→ 𝜏 𝑗 ,∀𝐽𝑖𝑘 ∈ J𝑖 ,∀𝐽 𝑗𝑘 ∈ J𝑗 :(

max
∀𝑥𝑖𝑘𝑙 ∈X𝑖𝑘

{𝑥𝑖𝑘𝑙 .𝜙 · 𝜇𝑐𝑎 + 𝑥𝑖𝑘𝑙 .𝐿} ≤ min
∀𝑓 𝑎𝑥

ℎ𝑘𝑙
∈F𝑎𝑥

ℎ𝑘

{𝑓 𝑎𝑥
ℎ𝑘𝑙

.𝜙 · 𝜇𝑎}
)
∧(

min
∀𝑥 𝑗𝑘𝑙 ∈X𝑗𝑘

{𝑥 𝑗𝑘𝑙 .𝜙 · 𝜇𝑐𝑏 } ≥

max
∀𝑓 𝑦𝑏

ℎ𝑘𝑙
∈F𝑦𝑏

ℎ𝑘

{𝑓 𝑦𝑏
ℎ𝑘𝑙

.𝜙 · 𝜇𝑦 + 𝑓
𝑦𝑏

ℎ𝑘𝑙
.𝐿} + Δ𝑦𝑏 + Π

ª®¬
Essentially, all segments of the sender task (in any period in-

stance) have to be scheduled (relative to the period) before the
start of the transmission of the associated stream on the same node.
Moreover, the start of any segment of the receiver task (in any job
instance) has to be past the reception of the stream on the receiver
node. Since the frame is scheduled on the last hop before the re-
ceiver node, we have to include the transmission duration and the
precision between the receiver node and the last device (switch) on
the stream’s route before the receiver node. With the𝑚𝑖𝑛 and𝑚𝑎𝑥

operators, we express that the latest segment of the sender task in
each period instance has to be scheduled before the earliest frame
of the corresponding period instance of the stream. Similarly, the
earliest segment of the receiver task in each period instance has
to be scheduled after the latest frame of the corresponding period
instance of the stream, also considering the transmission duration
to the receiver node and the network precision. Since the sender
task 𝜏𝑖 , receiver task 𝜏 𝑗 , and stream 𝑠ℎ have the same period, we
impose these constraints for the same period instances (jobs) via
common subscripts, i.e., 𝑥𝑖𝑘𝑙 , 𝑋 𝑗𝑘𝑙 , and frame instances 𝑓 𝑎𝑥

ℎ𝑘𝑙
on the

sender node as well as 𝑓 𝑦𝑏
ℎ𝑘𝑙

on the last hop before the receiver node.
In Constraints 6 and 7 the two network nodes’ clocks’ granularity,

which is given by their microtick 𝜇𝑥 , might differ. Hence, we scale
the offset and the segment length by the microtick. In contrast, we
do not scale the clock synchronization precision and the end-to-end
latency requirement as they are given in the network time.

If themacrotick is a multiple of themicrotick (and not as assumed
so far, equal), we impose amacrotick constraint that forces the offset
of tasks to be a multiple of the macrotick.

Constraint 8 (Macrotick Constraint). Given the virtualized dis-
tributed real-time system defined by the graph 𝐺 (V,L), we have:

∀𝑛 ∈ V,∀𝑐 ∈ C𝑛,∀𝜌 ∈ P(𝑐),
∀𝜏𝑖 ∈ T (𝜌),∀𝐽𝑖 𝑗 ∈ J𝑖 ,∀𝑥𝑖 𝑗𝑘 ∈ X𝑖 𝑗 :
(𝑥𝑖 𝑗𝑘 .𝜙 · 𝜇𝑐) mod 𝜂𝑐 = 0

Note that we define this constraint for task segments, but we
can also apply it to VCPU segments and frame instances. However,
to preserving readability, we do not explicitly add this constraint
in the following sections and assume that ∀𝑛 ∈ V : 𝜂𝑛 = 𝜇𝑛 .

4.3 System Virtualization Constraints
First, we need to ensure that no VCPU segments scheduled on the
same physical core overlap in the temporal domain.

Constraint 9 (Virtual CPU Overlapping). Given the virtualized
distributed real-time system defined by the graph 𝐺 (V,L), we have:

∀𝑛 ∈ V,∀𝑐 ∈ C𝑛,∀𝜌𝑖 , 𝜌𝑚 ∈ P(𝑐),
∀𝑧𝑖 𝑗 ∈ Z𝑖 ,∀𝑧𝑚𝑛 ∈ Z𝑚, 𝑧𝑖 𝑗 ≠ 𝑧𝑚𝑛 :
(𝑧𝑖 𝑗 .𝜙 · 𝜇𝑐 ≥ 𝑧𝑚𝑛 .𝜙 · 𝜇𝑐 + 𝑧𝑚𝑛 .𝐿)∨
(𝑧𝑚𝑛 .𝜙 · 𝜇𝑐 ≥ 𝑧𝑖 𝑗 .𝜙 · 𝜇𝑐 + 𝑧𝑖 𝑗 .𝐿)

Next, we need to ensure that the length of a VCPU segment is
greater than or equal to the sum of all the task segments that are
scheduled within it, plus the overhead of switching between VCPUs
on the hypervisor level. To define the constraint, we need a helper
set O𝑖 𝑗 that defines the set of task segments that fully overlap with
the given VCPU segment 𝑧𝑖 𝑗 . Hence, for a segment 𝑧𝑖 𝑗 , belonging
to VCPU 𝜌𝑖 assigned to core 𝑐 , we have:

O𝑖 𝑗 = {𝑥𝑙𝑚𝑛 |∀𝜏𝑙 ∈ T (𝜌𝑖),∀𝐽𝑙𝑚 ∈ J𝑙 ,∀𝑥𝑙𝑚𝑛 ∈ X𝑙𝑚 :
(𝑥𝑙𝑚𝑛 .𝜙 · 𝜇𝑐 +𝑚 ·𝑇𝑙 ≥ 𝑧𝑖 𝑗 .𝜙)∧
(𝑥𝑙𝑚𝑛 .𝜙 · 𝜇𝑐 +𝑚 ·𝑇𝑙 + 𝑥𝑙𝑚𝑛 .𝐿 ≤ 𝑧𝑖 𝑗 .𝜙 · 𝜇𝑐 + 𝑧𝑖 𝑗 .𝐿)}.

RTNS 2024, November 7–8, 2024, Porto, Portugal Jan Ruh and Silviu S. Craciunas

Constraint 10 (Virtual CPU Size Constraint). Given the virtualized
distributed real-time system defined by the graph 𝐺 (V,L), we have:

∀𝑛 ∈ V,∀𝑐 ∈ C𝑛,∀𝜌𝑖 ∈ P(𝑐),∀𝑧𝑖 𝑗 ∈ Z𝑖 :

𝑧𝑖 𝑗 .𝐿 ≥ 𝛿𝜌 (𝑐) +
∑︁

𝑥𝑙𝑚𝑛∈O𝑖 𝑗

𝑥𝑙𝑚𝑛 .𝐿

Finally, we need to ensure that all task segments that overlap
with a given VCPU segment are assigned to that VCPU.

Constraint 11 (Virtual CPU Assignment). Given the virtualized
distributed real-time system defined by the graph 𝐺 (V,L), we have:

∀𝑛 ∈ V,∀𝑐 ∈ C𝑛,∀𝜌𝑖 ∈ P(𝑐),∀𝑧𝑖 𝑗 ∈ Z𝑖 ,∀𝑥𝑙𝑚𝑛 ∈ O𝑖 𝑗 :
𝜏𝑙 ∈ T (𝜌𝑖)

4.4 Network Constraints
4.4.1 Deterministic Ethernet Constraints. The necessary correct-
ness constraints for scheduled traffic in IEEE 802.1Qbv, which were
introduced in [13] only apply to a strictly periodic transmission of
frames, i.e., each frame of a stream instance on a link has one offset
and each frame instance is sent at the same time in each period
instance. We use a more generic non-strictly periodic model and
extend the correctness conditions from [13] to this model. We refer
the reader to [13] for an in-depth explanation of the constraints
and their relation to the IEEE 802.1Qbv timed-gate mechanism.

First, any frame’s offset on a link must be within 0 and the period.

Constraint 12 (Frame Constraint). Given the set of streams S and
the virtualized distributed real-time system defined by the graph
𝐺 (V,L), we have:

∀𝑠𝑖 ∈ S,∀(𝑥,𝑦) ∈ 𝑠𝑖 ,∀𝑓 𝑥𝑦𝑖 𝑗
∈ F 𝑥𝑦

𝑖
:

(𝑓 𝑥𝑦
𝑖 𝑗

.𝜙 · 𝜇𝑥 ≥ 0) ∧ (𝑓 𝑥𝑦
𝑖 𝑗

.𝜙 · 𝜇𝑥 + 𝑓
𝑥𝑦

𝑖 𝑗
.𝐿 ≤ 𝑇𝑖)

Frames of different streams and frames of the same stream are
not allowed to overlap when transmitted on the same egress port.
Hence, any two frames (generated by the same or different streams)
are not allowed to overlap in any period instance until the hyper-
period of the two involved stream periods.

Constraint 13 (Link Constraint). Given the set of streams S and
the virtualized distributed real-time system defined by the graph
𝐺 (V,L), we have:

∀(𝑥,𝑦) ∈ L,∀𝑠𝑖 , 𝑠𝑙 ∈ S s.t. (𝑥,𝑦) ∈ 𝑠𝑖 ∧ (𝑥,𝑦) ∈ 𝑠𝑙 ,

∀𝐽𝑥𝑦
𝑖 𝑗

∈ J𝑥𝑦

𝑖
,∀𝐽𝑥𝑦

𝑙𝑚
∈ J𝑥𝑦

𝑙
,∀𝑓 𝑥𝑦

𝑖 𝑗𝑘
∈ F 𝑥𝑦

𝑖 𝑗
,∀𝑓 𝑥𝑦

𝑙𝑚𝑛
∈ F 𝑥𝑦

𝑙𝑚
, 𝑓

𝑥𝑦

𝑖 𝑗𝑘
≠ 𝑓

𝑥𝑦

𝑙𝑚𝑛
:(

𝑓
𝑥𝑦

𝑖 𝑗𝑘
.𝜙 · 𝜇𝑥 + 𝑗 ·𝑇𝑖 ≥ 𝑓

𝑥𝑦

𝑙𝑚𝑛
.𝜙 · 𝜇𝑥 +𝑚 ·𝑇𝑙 + 𝑓

𝑥𝑦

𝑙𝑚𝑛
.𝐿

)
∨(

𝑓
𝑥𝑦

𝑙𝑚𝑛
.𝜙 · 𝜇𝑥 +𝑚 ·𝑇𝑙 ≥ 𝑓

𝑥𝑦

𝑖 𝑗𝑘
.𝜙 · 𝜇𝑥 + 𝑗 ·𝑇𝑖 + 𝑓

𝑥𝑦

𝑖 𝑗𝑘
.𝐿

)
Next, we have to ensure that a flow’s transmission on a path from

sender to receiver must follow the sequential order of its frames,
i.e., a frame can only be scheduled for transmission on a subsequent
link after the previous link has fully received it. The granularity
of a node 𝑥 ∈ V clock is termed its macrotick 𝜇𝑥 . When defining
constraints crossing several network links, we must consider the
network time precision and nodes’ macroticks.

Constraint 14 (Flow Transmission Constraint). Given the set of
streams S and the virtualized distributed real-time system defined
by the graph 𝐺 (V,L), we have:

∀𝑠𝑖 ∈ S,∀(𝑎, 𝑥), (𝑥, 𝑏) ∈ 𝑠𝑖 ,

∀𝐽𝑎𝑥𝑖 𝑗 ∈ J𝑎𝑥
𝑖 ,∀𝐽𝑥𝑏𝑖 𝑗 ∈ J𝑥𝑏

𝑖 ,∀𝑓 𝑎𝑥
𝑖 𝑗𝑘

∈ F 𝑎𝑥
𝑖 𝑗 ,∀𝑓 𝑥𝑏

𝑖 𝑗𝑘
∈ F 𝑥𝑏

𝑖 𝑗 :

𝑓 𝑥𝑏
𝑖 𝑗𝑘

.𝜙 · 𝜇𝑥 − Δ𝑥𝑏 − Π ≥ 𝑓 𝑎𝑥
𝑖 𝑗𝑘

.𝜙 · 𝜇𝑎 + 𝑓 𝑎𝑥𝑖 𝑗 .𝐿

4.4.2 IEEE 802.1Qbv Constraints. In contrast to TTEthernet, an
802.1Qbv stream can consist of multiple frames. The number of
egress queues is hardware-dependent, and 802.1Qbv streams share
an egress queue with the same priority. In [13], the authors propose
a flow isolation constraint to prevent jitter due to the interleaving of
frames from different streams and discuss the ramifications concern-
ing increased performance yet reduced solution space compared to
a frame isolation constraint. Hence, we extend the frame isolation
constraint from [13]. For a stream 𝑠𝑖 ∈ S and on link (𝑎, 𝑏) ∈ 𝑠𝑖 , let
𝑃𝑎𝑏
𝑖

denote the port on node 𝑎 ∈ V that connects to node 𝑏 ∈ V
on which the stream transmits the frames. As before, we generalize
the constraint from [13] to our non-strictly periodic model.

Constraint 15 (Frame Isolation Constraint). Given the set of
streams S and the virtualized distributed real-time system defined
by the graph 𝐺 (V,L), we have:

∀(𝑥,𝑦) ∈ L,∀𝑠𝑖 , 𝑠𝑙 ∈ S s.t. (𝑥,𝑦) ∈ 𝑠𝑖 ∧ (𝑥,𝑦) ∈ 𝑠𝑙 , 𝑖 ≠ 𝑙,

∀𝐽𝑥𝑦
𝑖 𝑗

∈ J𝑥𝑦

𝑖
,∀𝐽𝑥𝑦

𝑙𝑚
∈ J𝑥𝑦

𝑙
,∀𝑓 𝑥𝑦

𝑖 𝑗𝑘
∈ F 𝑥𝑦

𝑖 𝑗
,∀𝑓 𝑥𝑦

𝑙𝑚𝑛
∈ F 𝑥𝑦

𝑙𝑚
:(

𝑃𝑎𝑏𝑖 ≠ 𝑃𝑎𝑏𝑗

)
∨((

𝑓 𝑎𝑏
𝑙𝑚𝑛

.𝜙 · 𝜇𝑎 +𝑚 ·𝑇𝑙 + Π ≤ 𝑓 𝑥𝑎
𝑖 𝑗𝑘

.𝜙 · 𝜇𝑥 + 𝑗 ·𝑇𝑖 + Δ𝑥𝑎
)
∨(

𝑓 𝑎𝑏
𝑖 𝑗𝑘

.𝜙 · 𝜇𝑎 + 𝑗 ·𝑇𝑖 + Π ≤ 𝑓
𝑦𝑎

𝑙𝑚𝑛
· 𝜇𝑦 +𝑚 ·𝑇𝑙 + Δ𝑦𝑎))

If the underlying network backbone is TTEthernet instead of
TSN, this constraint is not needed and all other constraints can
be applied as defined above (see also the comparison between the
correctness constraints of TSN and TTEthernet in [15]).

5 OFFLINE SCHEDULING
We can reduce the scheduling problem to placing and dimensioning
boxes on a two-dimensional plane, where one axis represents a
discrete time base with origin zero and the other axis a countable
set of computing and networking resources. The resulting deci-
sion problem, i.e., if for a given set of tasks executing on VCPUs
communicating via streams, there exists a schedule that fulfills
Constraints 1 to 15, is NP-complete. In many cases the scheduling
problem also faces optimization criteria, i.e., to minimize end-to-
end latency or to reduce context-switching overhead. Specifically,
we are interested in schedules minimizing VCPU context-switching
time [51]. Furthermore, there is an interdependency between sched-
uling and resource assignment. For this work, we focus on sched-
uling virtualized distributed real-time systems thus we presume
that the assignment of tasks to VCPUs and VCPUs to CPU cores is
given whereas the number and size of task and VCPU segments is
determined by the scheduler. We present an incremental SMT-based

End-to-End Schedulability of Virtualized Distributed Time-Triggered Systems RTNS 2024, November 7–8, 2024, Porto, Portugal

scheduler (iSMT) that implements Constraints 1 to 15 and mini-
mizes virtualization overhead yet does not scale with increasing
system size. In response, we explore a more efficient approach that
uses iSMT to schedule the network and simulates Earliest-Deadline-
First (EDF) at the expense of increased virtualization overhead.

5.1 Incremental SMT-based Scheduler
Satisfiability Modulo Theories (SMT) determine the satisfiability
of first-order logic formulas under a selected a background the-
ory [17]. In the case of our scheduling constraints, we use linear
integer arithmetic (Z, +, ≥) as the background theory. For a given
set of constraints formulated in (Z, +, ≥), an SMT solver yields a
model, i.e., a variable assignment that satisfies the formulas if a so-
lution exists or reports their unsatisfiability. However, even though
SMT concerning (Z, +, ≥) is decidable, it is NP-hard, so an effi-
cient algorithm to solve arbitrary sets of constraints is not known.
Steiner [61] first applied SMT to the scheduling ofTTEthernet and
proposed an incremental approach, successively adding constraints
of a variable-sized subset of frames to the solver’s context. If the
solver returns a model for a subset of frames, the incremental sched-
uler fixes the frames in the TT schedule. Otherwise, the scheduler
backtraces, increasing the size of the subset of frames. This has
shown a substantial runtime improvement in the average case [61].

Extending the network scheduling problem to consider task-level
and system virtualization requirements to facilitate the integration
of network and processor-level schedules in virtualized system ar-
chitectures complicates incremental solving substantially. Firstly,
including task-level and system virtualization requirements natu-
rally increases the constraints required to solve the scheduling prob-
lem. Furthermore, combined stream and task-level requirements
and logically grouping tasks on VCPUs introduce dependencies.
Suppose the scheduler sequentially adds streams and dependent
tasks to the SMT context. In that case, the solver cannot consider
dependent constraints when instantiating variables, e.g., the in-
terdependence between the last job segment offset and size of a
sender task and the transmission offset of a stream’s first frame
(c.f. Constraint 7). This results in augmented backtracking since the
solver extends the increment until it includes all dependent stream
and task constraints, potentially resulting in an inefficient incre-
ment that includes all stream and task constraints. Additionally,
integrating system virtualization constraints introduces further de-
pendencies between sender and receiver tasks as well as tasks that
are not participating in a stream by logically grouping them on
VCPUs. As a result, the order in which the scheduler adds groups
of schedulable entities (tasks, VCPUs, and streams) to the solver’s
context is crucial to avoid inefficient backtracking.

Given a virtualized distributed real-time system 𝐺 (V,L) and
a set of schedulable entities Σ = T ⋃P ⋃S, the iSMT scheduler
produces job segment offsets and sizes for schedulable entities if
a schedule exists or the empty set if it cannot find a solution. The
execution of the iSMT scheduler is split into two phases. First, we
create a dependency graph to identify tightly coupled groups of
schedulable entities and derive an order in which groups are incre-
mentally added to the SMT context. Afterward, the main scheduler
loop generates constraints for a given set of groups, freezing found

(0.4, 80)

(0.2, 20)

(0.1, 80)(0.1, 40)

(0.2, 40)

(0.2, 20) (0.2, 20)

(0.1, 80) (0.2, 20) (0.1, 20)

(0.2, 80) (0.2, 20) (0.2, 20) (0.1, 10)

(0.1, 80)

(0.4, 80)

(a) Create dependency graph

(0.4, 80)

(0.2, 20)

(0.1, 80)(0.1, 40)

(0.2, 40)

(0.2, 20) (0.2, 20)

(0.1, 80) (0.2, 20) (0.1, 20)

(0.2, 80) (0.2, 20) (0.2, 20) (0.1, 10)

(0.1, 80)

(0.4, 80)

(b) Identify tightly coupled groups

(0.1, 80)(0.1, 40)(0.2, 20) (0.4, 80)(0.2, 80) (0.1, 20)

(0.2, 20)(0.2, 20)(0.2, 20)(0.2, 40)(0.1, 80)(0.1, 80)

(0.4, 80) (0.2, 20) (0.1, 10) (0.2, 20)

(c) Sort tightly coupled schedulable groups

Figure 2: Dependency analysis

offsets if the increment is satisfiable, or backtracking if it is unsat-
isfiable. In the main scheduler loop, we apply a meta-heuristic to
minimize the number of VCPU preemptions.

5.1.1 Dependency Analysis. In Figure 2 we illustrate process of
dependency analysis given a task set T := {𝜏1, ..., 𝜏16} and 2 streams
S := {𝑠1, 𝑠2} being scheduled on 2 nodes with a total of 3 cores with
six VMs and VCPUs P := {𝜌11, 𝜌

2
1, 𝜌

3
1, 𝜌

4
1, 𝜌

4
2𝜌

5
1, 𝜌

6
1} (c.f. Figure 1).

Initially, the scheduler constructs a dependency graph differenti-
ating between schedulable entity dependencies and resource depen-
dencies as visualized in Figure 2a. A schedulable entity dependency
is a bidirectional dependency between two schedulables so that the
placement and dimensioning of their jobs’ segments are reciprocal.
Therefore, if the scheduler adds a pair of dependent schedulable
entities to the SMT context in differing increments, we see exces-
sive backtracking since the placement and dimensioning of the first
added schedulable entity does not consider the subsequently added
entity’s constraints. For instance in Figure 2a, stream 𝑠1 from 𝜏7 to
𝜏10 or the assignment of 𝜏1 to VCPU 𝜌21 constitute schedulable entity
dependencies. Further, a VCPU assigned to a processor core is a re-
source dependency. Resource dependencies are unidirectional such
as VCPU 𝜌21 executing on core 𝑐11 as we can see in Figure 2a. Note
that only considering schedulable entity dependencies, clusters of
tightly coupled schedulables emerge as shown in Figure 2b, i.e.,
schedulables whose placement and dimensioning are interdepen-
dent, so the scheduler must add them to the SMT context together to
prevent backtracking. Lastly, the scheduler sorts the tightly coupled
schedulable groups in descending order by their number of streams,
the additive inverse of the utilization without overhead, and the
additive inverse of the minimal schedulable period within the group
yielding an ordered set H := {{𝜏12, 𝜏1, ..., 𝜌51, 𝑠2}, ..., {𝜏14, 𝜏13, 𝜌

4
1}}

(c.f. Figure 2c). As a result, the scheduler solves tightly coupled

RTNS 2024, November 7–8, 2024, Porto, Portugal Jan Ruh and Silviu S. Craciunas

s.push()

yes

s.check()
SAT?

yes

optimized?
no

no

no

s.pop()

yes

no

yes

Generate resource
constraints R s.add(R)R

yes
no

no

s.add(C) C

no

Is
 a task?

Generate frames

Generate constraints
for orC

R

s.pop()

Freeze solution

Unfreeze solution

no

h=bt.pop()
yes

bt.push(h)

no

yes

Optimize number of
VCPU job segments,

store in

yes

Is a
VCPU?

Generate VCPU job
segments

Iterate group of
tightly coupled
schedulables

no

Iterate
schedulables in

group

yes

|bt| > 0?

yes

Generate task job segments

(2)

(3)

(4)

(5.1)

(5.2)

Initialize solver s

(1)

Figure 3: Activity diagram of the incremental scheduler

groups with many streams, contributing to high utilization of com-
putational resources while resources are still sparsely populated.

5.1.2 Incremental Solving with Meta-Heuristics. The sorted set of
tightly coupled schedulable groups acts as an input to the iSMT
scheduler. We denote the ordered set of schedulable groups as hot
schedulable groupsH . Figure 3 depicts the scheduling algorithm:
(1) We initialize the internal state: the set of frozen schedulable
groups 𝐹 = {∅}, a head ℎ and tail 𝑡 to index the hot schedulable
groups, the current backtracking distance 𝑑 and stack 𝑏𝑡 , and 2
dictionaries 𝑛 and 𝑜 storing for each VCPU the number of required
VCPU segments and the optimization summand, respectively.
(2) The central scheduler loop executes as long as the set of frozen
schedulable groups is smaller than the set of hot schedulable groups
|𝐹 | < |𝐻 |. The head ℎ and tail 𝑡 determine the size of the increment,
i.e., the tightly coupled schedulable groups solved within the same
SMT context. For instance, as long as there was no backtracking it

is 𝑡 − ℎ = 1 and the central scheduler loop picks a single group to
add to the SMT context at a time.
(3) Each group of tightly coupled schedulables 𝐺 [𝑔] with 𝑔 ∈
{ℎ, ..., 𝑡 − 1} is sorted first by type (task, VCPU, or stream), and
then by period, so that within a group high-frequency tasks are
processed first and low-frequency streams last (Figure 2c). The
scheduler iterates a group’s schedulables ΣG and generates job
segment constraints differentiating tasks, VCPUs, and streams. The
scheduler keeps track of the number of task segments generated
per VCPU in the dictionary 𝑛. Hence, once the scheduler processes
a group’s VCPUs, for each VCPU 𝜌 = 𝜎𝑖 , the maximum number
of required VCPU segments is known and the scheduler gener-
ates 𝑛[𝜌] − 𝑜 [𝜌] job segments for VCPU 𝜌 . If a schedulable is
a stream 𝑠 = 𝜎𝑖 , for each link (𝑣𝑥 , 𝑣𝑦) ∈ 𝑠 we generate frames

F𝑖 = {F (𝑣𝑥 ,𝑣𝑦)
𝑖

| ∀(𝑣𝑥 , 𝑣𝑦) ∈ 𝑠}. The scheduler uses the generated
segments and frames to synthesize constraints for the SMT context.
(4) After generating schedulable constraints, the scheduler iterates
system resources, including CPU cores, VCPUs, and links, using the
set of job segments X and frames F to generate and add resource
constraints and check the satisfiability of the resulting SMT context.
(5.1) If the solver finds a solution, it optimizes the number of re-
quired VCPU segments since it initially generated constraints as-
suming the maximum number of job segments per VCPU. There
are two possible optimizations. Firstly, the SMT solver might return
VCPU segments not containing any job segments since it grouped
job segments sharing a VCPU together. Secondly, the SMT solver
can place two segments belonging to the same VCPU in direct
succession so that the resulting VCPU preemption is dispensable.
Therefore, for each VCPU 𝜌𝑖 the scheduler counts the number of
empty and consecutive thus redundant VCPU segments, and stores
the optimization summand in 𝑜 [𝜌𝑖]. Suppose the scheduler has
detected optimizations for at least one VCPU. In that case, it pops
the corresponding SMT context and reiterates the same group of
tightly coupled schedulables, optimizing the number of VCPU job
segments. Once the scheduler cannot further decrease the number
of VCPU job segments, it pushes the current SMT context on the
solver’s stack, freezes the found variable assignments, and adjusts
ℎ and 𝑡 to index the next hot group of tightly coupled schedulables.
(5.2) When the SMT context is unsatisfiable, the scheduler back-
tracks. If the backtracking distance is zero and there is a head on
the backtracking stack, the scheduler restores the head from the
backtracking stack and unfreezes the corresponding tightly coupled
schedulable groups. If the backtracking distance is greater than 0
or the backtracking stack is empty, but the scheduler can further
backtrack, i.e. the head is not at index 0, we decrease the head,
and proceed as before with unfreezing the corresponding tightly
coupled schedulable groups. If ℎ = 0, backtracking has included all
tightly coupled schedulable groups in a single SMT context, and
the solver found no solution so the scheduler returns an empty set.

Note that iSMT initially generates one segment per task job in
scheduler Step (3). To simplify the scheduler’s visualization in Fig-
ure 3, we omit a subroutine in Step (5.2) that increases the number
of generated task segments if backtracking completes without find-
ing a solution (ℎ = 0) and reiterates the central loop trying to find
a schedule generating more than one segment per task job.

End-to-End Schedulability of Virtualized Distributed Time-Triggered Systems RTNS 2024, November 7–8, 2024, Porto, Portugal

5.2 Simulating Earliest-Deadline-First
The iSMT scheduler aims to minimize the number of VCPU pre-
emptions by starting the search with the minimal number of task
segments and the maximum number of required VCPU segments,
successively decreasing the number of VCPU segments to cluster
task segments sharing a VCPU. However, the iSMT scheduler’s
runtime scales badly with increasing system size (c.f. Section 6).
Therefore, we inroduce iSMT-EDF that invokes iSMT to reserve
stream offsets, simulates EDF to schedule tasks (similar to [14]), and
applies a simple heuristic to dimension and place VCPU segments.

First, given a virtualized distributed real-time system 𝐺 (V,L),
a set of tasks T , and a set of streams S, iSMT-EDF isolates all
dependent tasks 𝜏𝑖 , 𝜏 𝑗 ∈ T ′ ⊂ T with 𝜏𝑖

𝑠𝑘−−→ 𝜏 𝑗 for 𝑠𝑘 ∈ S.
The subset of dependent tasks T ′ yields a set of VCPUs P′ so
that T ′ =

⋃
∀𝜌∈P′ T (𝜌), i.e., the VCPUs in P′ contain only the

communicating tasks T ′. The resulting set of schedulable entities
Σ = T ′ ∪P′ ∪S acts as input to the iSMT scheduler, yielding a net-
work schedule and offsets and sizes for task job segments, consider-
ing the presence of VCPUs. Subsequently, these offsets and sizes of
communicating task job segments identified by iSMT limit release
times and deadlines of communicating tasks in the EDF simulation
so that they adhere to the corresponding network schedule. We sim-
ulate EDF with a configurable microtick, i.e., there is a trade-off be-
tween schedulability and runtime for small versus large microticks.
Similarly to iSMT, the EDF simulation assumes one VCPU segment
per job segment of a task. Hence, for a task 𝜏𝑖 ∈ T (𝜌) executing in
a VCPU 𝜌 ∈ P(𝑐) on a core 𝑐 ∈ C𝑛 , in the case of a context switch,
the simulation accounts for the task’s context-switching overhead
𝛿𝜏 (𝑐) and, if the subsequent task 𝜏 𝑗 ∈ T (𝜌′) executes on a different
VCPU, i.e., 𝜌 ≠ 𝜌′, also for the VCPU’s context-switching over-
head 𝛿𝜌 (𝑐). It is X(𝑧𝑖 𝑗) = {𝑥1, ..., 𝑥𝑚} an ordered set of𝑚 consecu-
tive job segments sharing a segment 𝑧𝑖 𝑗 ∈ Z𝑖 of a VCPU 𝜌𝑖 ∈ P(𝑐),
i.e., from 𝑥1 .𝜙 + 𝑥1 .𝐿 = 𝑥2 .𝜙 to 𝑥𝑚−1 .𝜙 + 𝑥𝑚−1 .𝐿 = 𝑥𝑚 .𝜙 . Then,
VCPU segment 𝑧𝑖 𝑗 ’s offset and size are given by 𝑧𝑖 𝑗 .𝜙 = 𝑥1 .𝜙−𝛿𝜌 (𝑐)
and 𝑧𝑖 𝑗 .𝐿 = 𝑥𝑚 .𝜙 + 𝑥𝑚 .𝐿 respectively.

Contrary to iSMT, which initially presumes the maximum num-
ber of VCPU segments and optimizes in successive sweeps, EDF-
SMT trades subpar VCPU segment placement and dimensioning
resulting in an expected higher VCPU preemption overhead of the
resulting schedule for improved runtime and scalability.

6 EXPERIMENTS
We compare iSMT and iSMT-EDF concerning their attained schedu-
lability, schedule synthesis runtime, and resulting VCPU context-
switching overhead varying the system size, i.e., number of nodes,
switches, and flows, and the target task utilization. With both sched-
ulers, iSMT and iSMT-EDF, we intend to demonstrate the appli-
cability of our formal system and scheduling model to synthesize
global schedules incorporating tasks, streams, and VCPUs with
end-to-end latency guarantees. Conversely, we do not claim that
iSMT and iSMT-EDF solve the global scheduling problem efficiently.
Indeed, a schedule synthesis runtime of several hours for single
problem instances delimited the total number of data points we
could generate. We countered high synthesis runtimes by solving
up to 14 instances in parallel on an AMDRyzen 7 2700Xwith 8 phys-
ical cores and two logical cores at 2.2𝐺𝐻𝑧 each, accessing 64𝐺𝑖𝐵

Table 2: Overview of problem instances’ dimensions.

System
Params. Util. System

Size
num. tasks
(min., max.)

num. VCPUs
(min., max.)

Bosch

50.0%

1/0/0 173, 230 101, 150
2/1/25 341, 467 219, 289
4/1/50 732, 874 463, 563
4/2/75 732, 874 463, 563
8/2/100 1520, 1766 925, 1103

70.0%

1/0/0 232, 313 127, 182
2/1/25 481, 619 248, 354
4/1/50 1030, 1193 555, 652
4/2/75 1030, 1193 555, 652
8/2/100 2233, 2396 1151, 1290

TTTech

50.0%

1/0/0 241, 295 127, 157
2/1/25 470, 564 251, 322
4/1/50 1008, 1128 545, 637
4/2/75 1008, 1128 545, 637
8/2/100 2089, 2182 1111, 1255

70.0%

1/0/0 329, 403 147, 196
2/1/25 679, 803 299, 379
4/1/50 1400, 1525 649, 754
4/2/75 1400, 1525 649, 754
8/2/100 2843, 3048 1309, 1474

of main memory. The scheduler times out after 2.5ℎ and reports
the subset of scheduled tasks, VCPUs, and stream at that instant.

We presume a homogeneous distributed system for all experi-
ments in which each node comes with four CPU cores. Accordingly,
we infer WCETs relative to the CPU speed. We used realistic values
𝛿𝜏 (𝑐) = 10 𝜇𝑠 and 𝛿𝜌 (𝑐) = 30 𝜇𝑠 for the task and VCPU context-
switching times across all problem instances to evaluate the VCPU
context-switching time overhead of resulting schedules.

6.1 Increasing System Size
First, we evaluate the effect of increasing system size on the schedu-
lability, schedule synthesis runtime, and VCPU context-switch over-
head for two sets of real-world system properties named Bosch [38]
and TTTech [22] benchmarks. We consider 5 system sizes identified
by the number of nodes, number of TSN switches, and number
of streams. For each system size (#nodes/#switches/#streams) and
benchmark, we generated 10 problem instances.

We randomly generate between 64 and 128 VMs with a random
number of VCPUs for each host node 𝑛 ∈ V = {1, ..., #𝑛𝑜𝑑𝑒𝑠}
with |𝐶𝑛 | = 4 cores. To generate random task sets per CPU
core, we use task characteristics as found in automotive applica-
tions [22, 38]. For the Bosch benchmark, we randomly select task
periods from a set 𝑇 1 = {1, 2, 5, 10, 20, 50, 100, 200, 1000}𝑚𝑠 with
distribution 𝑃1 = {0.03, 0.02, 0.02, 0.25, 0.25, 0.03, 0.2, 0.01, 0.04}.
Given a task’s random period 𝑇𝑖 ∈ 𝑇 1 at index 𝑖 , to
determine its WCET, we select its corresponding average-
case execution time at index 𝑖 from the set 𝐴𝐶𝐸𝑇𝑠 =

{5, 4.2, 11.040, 10.090, 8.740, 17.560, 10.530, 2.560, 0.430}𝜇𝑠 and its
minimum and maximum WCET factors 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 from
the sets 𝐹𝑚𝑖𝑛 = {1.3, 1.54, 1.13, 1.06, 1.06, 1.13, 1.02, 1.03, 1.84} and
𝐹𝑚𝑎𝑥 = {29.11, 19.04, 18.44, 30.03, 15.61, 7.76, 8.88, 4.9, 4.75}, respec-
tively. Then, we pick a random WCET factor 𝑓 ∈ [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥]

RTNS 2024, November 7–8, 2024, Porto, Portugal Jan Ruh and Silviu S. Craciunas

1/
0/

0

2/
1/

25

4/
1/

50

4/
2/

75

8/
2/

10
0

1/
0/

0

2/
1/

25

4/
1/

50

4/
2/

75

8/
2/

10
0

1/
0/

0

2/
1/

25

4/
1/

50

4/
2/

75

8/
2/

10
0

1/
0/

0

2/
1/

25

4/
1/

50

4/
2/

75

8/
2/

10
0

20%
40%
60%
80%

100%

S
ch

ed
u

la
b

il
it

y

UTT = 50% UTT = 70%

Bosch

UTT = 50% UTT = 70%

TTTech

Schedulability iSMT Schedulability iSMT-EDF

1 s

10 s
1.5min

15min

2.5h

R
u

n
ti

m
e

[s
]

Avg. runtime iSMT Avg. runtime iSMT-EDF

(a) Schedulability and schedulable instances’ runtimes.

1 s

10 s

1.5min

15min

2.5h

R
u

n
ti

m
e

[s
]

Avg. runtime iSMT Avg. runtime iSMT-EDF

1/
0/

0

2/
1/

25

4/
1/

50

4/
2/

75

8/
2/

10
0

1/
0/

0

2/
1/

25

4/
1/

50

4/
2/

75

8/
2/

10
0

1/
0/

0

2/
1/

25

4/
1/

50

4/
2/

75

8/
2/

10
0

1/
0/

0

2/
1/

25

4/
1/

50

4/
2/

75

8/
2/

10
0

20%

40%

60%

80%

100%

U
ti

li
za

ti
o
n

UTT = 50% UTT = 70%

Bosch

timeout

UTT = 50% UTT = 70%

TTTech

Avg. task util. iSMT Avg. VCPU util. iSMT Avg. task util. iSMT-EDF Avg. VCPU util. iSMT-EDF

(b) Fraction of scheduled tasks and VCPUs within timeout of 2.5𝒉.

Figure 4: Results for different system sizes (#nodes/#switches/#streams) and sets of problem instances (TTTech, Bosch), with
10 𝝁𝒔 microtick, and periods 𝑻𝒊 ∈ Bosch = {1, 2, 5, 10, 20, 50, 100, 200, 1000}𝒎𝒔, 𝑻𝒊 ∈ TTTech = {5, 10, 20, 40, 80}𝒎𝒔.

and calculate the task’s WCET 𝐶𝑖 = 𝑓 · 𝐴𝐶𝐸𝑇𝑠 [𝑖]. We assign
each generated task to a VCPU of that core, and the procedure
repeats until it reaches a target utilization, not including context-
switching overheads. For the TSN backbone, we assume that each
communicating VM can directly access a physical network in-
terface card (NIC) connected to a TSN switch. If the TSN back-
bone consists of more than one switch, the switches form a
mesh network. To generate communication streams, we identify
pairs of tasks with the same period assigned to VCPUs located
on different nodes. Then, we randomly pick a pair of tasks as
the source and sink of a stream and select its data size from
the set 𝐷 = {1, 2, 4, 8, 16, 32, 64, 3000} byte with size distribution
{0.35, 0.49, 0.13, 0.008, 0.013, 0.005, 0.002, 0.002} that again is repre-
sentative of automotive applications [38].We assume that a stream’s
end-to-end latency equals its period.

For the TTTech benchmark, we replace the periods and distribu-
tion used in the Bosch benchmark with the ones described in [22],
i.e., we randomly select task periods from𝑇 2 = {5, 10, 20, 40, 80}𝑚𝑠

with distribution 𝑃2 = {0.09166, 0.2666, 0.125, 0.19166, 0.325} and
prune the 𝐴𝐶𝐸𝑇 , 𝐹𝑚𝑖𝑛 , and 𝐹𝑚𝑎𝑥 sets so that their dimensions
align, i.e., 𝐴𝐶𝐸𝑇 ′ = {11.040, 10.090, 8.740, 17.560, 10.530}𝜇𝑠 ⊂
𝐴𝐶𝐸𝑇 , 𝐹 ′

𝑚𝑖𝑛
= {1.13, 1.06, 1.06, 1.13, 1.02} ⊂ 𝐹𝑚𝑖𝑛 , and 𝐹 ′𝑚𝑎𝑥 =

{18.44, 30.03, 15.61, 7.76, 8.88} ⊂ 𝐹𝑚𝑎𝑥 . Table 2 summarizes the min-
imum and maximum number of tasks and VCPUs generated across

the 10 instances for each benchmark, target problem utilization,
and system size.

Figure 4 shows the schedulability or attained utilization [%] on
the left y-axes and the schedule synthesis runtime on the logarith-
mic right y-axes. We see that in the case of the TTTech bench-
mark, all problem instances generated for systems without net-
work communication (1/0/0) and 50% task target utilization, are
schedulable with both schedulers (c.f. Figure 4a). However, iSMT-
EDF (0.32± 0.07 𝑠) outperforms iSMT (1413.30± 1275.95 𝑠) in terms
of schedule synthesis runtime. For a system with 25 streams and a
task target utilization of 50%, iSMT still schedules 7 out 10 TTTech
problem instances within 2.5ℎ whereas iSMT-EDF successfully
schedules 90% of TTTech problem instances in 200.73 ± 533.86 𝑠 .
For systems exceeding 25 streams, iSMT times out on all TTTech in-
stances whereas iSMT-EDF retains 100%, 50%, and 40% schedulabil-
ity for system sizes 4/1/50, 4/2/75, and 8/2/100, respectively, with ex-
ponentially increasing synthesis runtime. Note that for the biggest
system size 8/2/100 and 50% target utilization, iSMT-EDF schedules
TTTech problem instances featuring between 2089 and 2182 tasks
and 1151 and 1290 VCPUs (c.f. Table 2). For the TTTech benchmark
with 70% target utilization, iSMT consistently times out whereas
iSMT-EDF exhibits comparable scalability of schedulability and
synthesis runtime as for a 50% target utilization.

In the case of the Bosch benchmark, iSMT times out regard-
less of the system size whereas iSMT-EDF successfully schedules

End-to-End Schedulability of Virtualized Distributed Time-Triggered Systems RTNS 2024, November 7–8, 2024, Porto, Portugal

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

Target Utilization

20%

40%

60%

80%

100%

S
ch

ed
u

la
b

il
it

y

Schedulability iSMT Schedulability iSMT-EDF

1 s

10 s

1.5min

15min

2.5h

R
u

n
ti

m
e

[s
]

Avg. runtime iSMT Avg. runtime iSMT-EDF

(a) Schedulability and schedulable instances’ runtimes.

1 s

10 s

1.5min

15min

2.5h

R
u

n
ti

m
e

[s
]

Avg. runtime iSMT Avg. runtime iSMT-EDF

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

Target Utilization

20%

40%

60%

80%

100%

U
ti

li
za

ti
o
n

timeout

Avg. task util. iSMT
Avg. VCPU util. iSMT

Avg. task util. iSMT-EDF
Avg. VCPU util. iSMT-EDF

(b) Fraction of scheduled tasks and VCPUs within 2.5𝒉timeout.

Figure 5: Fixed system size (2/1/25) and increasing target utilization, 10 𝝁𝒔 microtick, periods 𝑻𝒊 ∈ TTTech = {5, 10, 20, 40, 80}𝒎𝒔.

all instances without streams and 4 out of 10 for a target utiliza-
tion of 50%. For the Bosch benchmark with a target utilization of
70% and system size 1/0/0, iSMT-EDF cannot find a solution for
any problem instance except for a single 1/0/0 instance. For the
remaining instances with a target utilization of 70%, iSMT-EDF
times out. Therefore, in Figure 4b, we show the effective average
task and VCPU utilization iSMT and iSMT-EDF realize within 2.5ℎ
runtime per problem instance. Considering the attained average
task utilization of both schedulers, the Bosch benchmark uncovers a
common weakness of our approach: Scheduling the network using
incremental SMT solving. The Bosch benchmark consistently yields
problem instances with the maximum possible hyperperiod of 1 𝑠
and high-frequency tasks and streams of more than 200𝐻𝑧. Thus,
even for small system sizes, Bosch problem instances result in over
105 constraints in iSMT-EDF’s SMT context compared to about
104 for TTTech problem instances. Ultimately, the SMT solver in
both schedulers poses the bottleneck for more efficient schedule
synthesis and in future work we aim to implement a fully heuristic
search that does not use any SMT solver.

Lastly, Figure 4b shows the attained task utilization as well as
VCPU utilization for both schedulers. The gap between both lines
indicates the VCPU context-switching overhead. As expected, we
see that for feasible problem instances, iSMT provides schedules
with less VCPU context-switching overhead than iSMT-EDF. In
numbers, for a target utilization of 50% in the case of schedulable
system sizes 1/0/0 and 2/1/25 of the TTTech benchmark, iSMT yields
an average VCPU context-switching overhead of 8.4%. Contrary,
iSMT-EDF yields an average VCPU context-switching overhead of
11.7% across all system sizes of the TTTech benchmark for a target
utilization of 50% and 15.8% with a target utilization of 70%. For the
iSMT-EDF and the Bosch benchmarks, we find an average VCPU
context-switching overhead of 14.3% for the schedulable problem
instances with a system size of 1/0/0 and 2/1/25 and with a target
utilization set to 50%.

6.2 Increasing Utilization
In the second set of experiments, we retain a system size of 2/1/25
and generate a task set of size 480, i.e., 60 tasks and 32 VCPUs per
core, but increase the target task utilization to evaluate its effect on

the schedulability, schedule synthesis runtime, and VCPU context-
switching overhead. We use the TTTech benchmark but generate
task WCETs using the algorithm from [18, 19]. We omit the Bosch
benchmark as initial experiments lead to time-outs for system size
2/1/25, similar to the previous experiments.

Figure 5 shows the schedulability, attained utilization, and run-
time for the target utilization increasing from 10% to 90%. From
10% to 30% target utilization iSMT and iSMT-EDF achieve com-
parable schedulability with lower synthesis runtime of iSMT-EDF
compared to iSMT (c.f. Figure 5a). Starting with a target utilization
of 40% iSMT times out for 4/10 problem instances, declining to
2/10 for a target utilization of 50%, and always timing out for a
target utilization exceeding 50%. Considering the attained utiliza-
tion in Figure 5b, we can see that iSMT consistently achieves about
30% task utilization within 2.5ℎ synthesis runtime. In contrast,
iSMT-EDF can schedule all generated instances up to 70% target uti-
lization and 50% of problem instances for 80% target utilization with
an average runtime below 90 𝑠 . For schedulable problem instances
from 10% to 30% target utilization, iSMT yields an average VCPU
context-switching overhead of 6.8%. In comparison, for schedulable
problem instances from 10% to 80% target utilization, iSMT-EDF
yields an average VCPU context-switching overhead of 10.7%.

7 CONCLUSION
In this paper we have studied distributed safety-critical applications
in which real-time tasks execute in a virtualized environment on
multi-core multi-SoC platforms and communicate critical messages
over a deterministic communication backbone. We have defined
correctness constraints for the schedulability of distributed virtu-
alized safety-critical systems that use time-triggered scheduling
on the computation, the communication, and the virtualization
layers. Furthermore, we presented a formal system and scheduling
model to harmonize these different layers of the global scheduling
problem. We also introduced two offline algorithms to generate
TT schedules for all layers that guarantee end-to-end latency re-
quirements. The two schedulers offer trade-offs between schedule
synthesis runtime and virtualization overhead. We have used syn-
thetic benchmarks derived from real-world systems to show the
scalability and schedulability of our offline scheduling approaches.

RTNS 2024, November 7–8, 2024, Porto, Portugal Jan Ruh and Silviu S. Craciunas

REFERENCES
[1] Luca Abeni and Giorgio C. Buttazzo. 2004. Resource Reservation in Dynamic Real-

Time Systems. Real Time Syst. 27, 2 (2004), 123–167. https://doi.org/10.1023/B:
TIME.0000027934.77900.22

[2] Hamidreza Ahmadian, Roman Obermaisser, and Jon Perez. 2018. Distributed
Real-Time Architecture for Mixed-Criticality Systems. CRC Press.

[3] Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert I.
Davis. 2022. A comprehensive survey of industry practice in real-time systems.
Real Time Syst. 58, 3 (2022), 358–398. https://doi.org/10.1007/S11241-021-09376-1

[4] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. 2009.
Satisfiability Modulo Theories. In Handbook of Satisfiability, Armin Biere, Marijn
Heule, Hans van Maaren, and Toby Walsh (Eds.). Frontiers in Artificial Intelli-
gence and Applications, Vol. 185. IOS Press, 825–885. https://doi.org/10.3233/978-
1-58603-929-5-825

[5] Sanjoy K. Baruah and Gerhard Fohler. 2011. Certification-Cognizant Time-
Triggered Scheduling of Mixed-Criticality Systems. In Proceedings of the 32nd
IEEE Real-Time Systems Symposium, RTSS 2011, Vienna, Austria, November 29 -
December 2, 2011. IEEE Computer Society, 3–12. https://doi.org/10.1109/RTSS.
2011.9

[6] Mohammadreza Barzegaran and Paul Pop. 2023. The FORA European Training
Network on Fog Computing for Robotics and Industrial Automation. In Design,
Automation & Test in Europe Conference & Exhibition, DATE 2023, Antwerp, Bel-
gium, April 17-19, 2023. IEEE, 1–6. https://doi.org/10.23919/DATE56975.2023.
10137067

[7] Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and Thomas
Nolte. 2016. Synthesizing Job-Level Dependencies for Automotive Multi-rate
Effect Chains. In 22nd IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, RTCSA 2016, Daegu, South Korea, August 17-
19, 2016. IEEE Computer Society, 159–169. https://doi.org/10.1109/RTCSA.2016.41

[8] Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and Thomas
Nolte. 2017. End-to-end timing analysis of cause-effect chains in automotive
embedded systems. J. Syst. Archit. 80 (2017), 104–113. https://doi.org/10.1016/J.
SYSARC.2017.09.004

[9] Timothy Broomhead, Laurence Cremean, Julien Ridoux, and Darryl Veitch. 2010.
Virtualize Everything but Time. In 9th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2010, October 4-6, 2010, Vancouver, BC, Canada,
Proceedings, Remzi H. Arpaci-Dusseau and Brad Chen (Eds.). USENIX Association,
451–464. http://www.usenix.org/events/osdi10/tech/full_papers/Broomhead.pdf

[10] Zhuo Cheng, Jinyun Xue, Haitao Zhang, Zhen You, Qimin Hu, and Yuto Lim.
2020. Scheduling Heterogeneous Multiprocessor Real-Time Systems with Mixed
Sets of Task. In 14th IEEE International Conference on Service Oriented Systems
Engineering, SOSE 2020, Oxford, UK, August 3-6, 2020. IEEE, 72–81. https://doi.
org/10.1109/SOSE49046.2020.00016

[11] Silviu S. Craciunas and Ramon Serna Oliver. 2016. Combined task- and network-
level scheduling for distributed time-triggered systems. Real Time Systems 52, 2
(2016), 161–200. https://doi.org/10.1007/S11241-015-9244-X

[12] Silviu S. Craciunas and Ramon Serna Oliver. 2021. Out-of-sync Schedule Ro-
bustness for Time-sensitive Networks. In 17th IEEE International Conference on
Factory Communication Systems, WFCS 2021, Linz, Austria, June 9-11, 2021. IEEE,
75–82. https://doi.org/10.1109/WFCS46889.2021.9483602

[13] Silviu S. Craciunas, Ramon Serna Oliver, Martin Chmelík, and Wilfried Steiner.
2016. Scheduling Real-Time Communication in IEEE 802.1Qbv Time Sensitive
Networks. In Proceedings of the 24th International Conference on Real-Time Net-
works and Systems, RTNS 2016, Brest, France, October 19-21, 2016, Alain Plantec,
Frank Singhoff, Sébastien Faucou, and Luís Miguel Pinho (Eds.). ACM, 183–192.
https://doi.org/10.1145/2997465.2997470

[14] Silviu S. Craciunas, Ramon Serna Oliver, and Valentin Ecker. 2014. Optimal static
scheduling of real-time tasks on distributed time-triggered networked systems.
In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation,
ETFA 2014, Barcelona, Spain, September 16-19, 2014, Antoni Grau and Herminio
Martínez (Eds.). IEEE, 1–8. https://doi.org/10.1109/ETFA.2014.7005128

[15] Silviu S. Craciunas and Ramon Serna Oliver. 2017. An Overview of Scheduling
Mechanisms for Time-sensitive Networks. Technical report, Real-time summer
school L’École d’Été Temps Réel (ETR).

[16] Alfons Crespo, Ismael Ripoll, and Miguel Masmano. 2010. Partitioned Embedded
Architecture Based on Hypervisor: The XtratuM Approach. In Eighth European
Dependable Computing Conference, EDCC-8 2010, Valencia, Spain, 28-30 April 2010.
IEEE Computer Society, 67–72. https://doi.org/10.1109/EDCC.2010.18

[17] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2011. Satisfiability modulo
theories: introduction and applications. Commun. ACM 54, 9 (2011), 69–77.
https://doi.org/10.1145/1995376.1995394

[18] Paul Emberson. [n. d.]. TaskGen v1.0. https://github.com/jlelli/taskgen.
[19] Paul Emberson, Roger Stafford, and Robert I Davis. 2010. Techniques for the

synthesis of multiprocessor tasksets. In Proceedings of the 1st International Work-
shop on Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS 2010). 6–11.

[20] Rolf Ernst, Stefan Kuntz, Sophie Quinton, and Martin Simons. 2018. The Logical
Execution Time Paradigm: New Perspectives for Multicore Systems (Dagstuhl
Seminar 18092). Dagstuhl Reports 8, 2 (2018), 122–149. https://doi.org/10.4230/
DAGREP.8.2.122

[21] Xiang Feng and A.K. Mok. 2002. A model of hierarchical real-time virtual re-
sources. In 23rd IEEE Real-Time Systems Symposium, 2002. RTSS 2002. 26–35.
https://doi.org/10.1109/REAL.2002.1181559

[22] Anaïs Finzi, Silviu S. Craciunas, and Marc Boyer. 2024. Integrating Sporadic
Events in Time-triggered Systems via Affine Envelope Approximations. In 2024
IEEE 30th Real-Time and Embedded Technology and Applications Symposium
(RTAS). 15–28. https://doi.org/10.1109/RTAS61025.2024.00010

[23] Tom Fleming, Sanjoy K. Baruah, and Alan Burns. 2016. Improving the Schedu-
lability of Mixed Criticality Cyclic Executives via Limited Task Splitting. In
Proceedings of the 24th International Conference on Real-Time Networks and
Systems, RTNS 2016, Brest, France, October 19-21, 2016, Alain Plantec, Frank
Singhoff, Sébastien Faucou, and Luís Miguel Pinho (Eds.). ACM, 277–286. https:
//doi.org/10.1145/2997465.2997492

[24] Robert Kaiser Rudolf Fuchsen. 2005. Method for distributing computing time
in a computer system. Patent No. 20090210879A1, Filed November 11st., 2005,
Issued Aug. 20th., 2009.

[25] Gautam Gala, Javier Castillo Rivera, and Gerhard Fohler. 2021. Work-in-Progress:
Cloud Computing for Time-Triggered Safety-Critical Systems. In 42nd IEEE Real-
Time Systems Symposium, RTSS 2021, Dortmund, Germany, December 7-10, 2021.
IEEE, 516–519. https://doi.org/10.1109/RTSS52674.2021.00054

[26] Gernot Heiser and Ben Leslie. 2010. The OKL4 microvisor: convergence point
of microkernels and hypervisors. In Proceedings of the 1st ACM SIGCOMM Asia-
Pacific Workshop on Systems, ApSys 2010, New Delhi, India, August 30, 2010, Chan-
dramohan A. Thekkath, Ramakrishna Kotla, and Lidong Zhou (Eds.). ACM, 19–24.
https://doi.org/10.1145/1851276.1851282

[27] IEEE. 2016. 802.1Qbv - Enhancements for Scheduled Traffic. https://standards.
ieee.org/standard/802_1Qbv-2015.html. Accessed: 21.05.2024.

[28] IEEE. 2016. Official Website of the 802.1 Time-Sensitive Networking Task Group.
http://www.ieee802.org/1/pages/tsn.html. Accessed: 21.05.2024.

[29] IEEE. 2020. IEEE Std 802.1AS-2020. https://standards.ieee.org/standard/802_1AS-
2020.html. Accessed: 21.05.2024.

[30] Haris Isakovic and Radu Grosu. 2016. A heterogeneous time-triggered architec-
ture on a hybrid system-on-a-chip platform. In 25th IEEE International Symposium
on Industrial Electronics, ISIE 2016, Santa Clara, CA, USA, June 8-10, 2016. IEEE,
244–253. https://doi.org/10.1109/ISIE.2016.7744897

[31] Damir Isovic and Gerhard Fohler. 2009. Handling mixed sets of tasks in combined
offline and online scheduled real-time systems. Real Time Syst. 43, 3 (2009),
296–325. https://doi.org/10.1007/S11241-009-9088-3

[32] Jan Jatzkowski, Marcio Kreutz, and Achim Rettberg. 2017. Hierarchical Multicore-
Scheduling for Virtualization of Dependent Real-Time Systems. In System Level
Design from HW/SW to Memory for Embedded Systems, Marcelo Götz, Gunar
Schirner, Marco Aurélio Wehrmeister, Mohammad Abdullah Al Faruque, and
Achim Rettberg (Eds.). Springer International Publishing, Cham, 103–115.

[33] Robert Kaiser. 2008. Alternatives for scheduling virtual machines in real-time
embedded systems. In Proceedings of the 1st Workshop on Isolation and Integration
in Embedded Systems, IIES ’08, Glasgow, Scotland, April 1, 2008, Michael Engel and
Olaf Spinczyk (Eds.). ACM, 5–10. https://doi.org/10.1145/1435458.1435460

[34] Timo Kerstan, Daniel Baldin, and Stefan Groesbrink. 2010. Full virtualization
of real-time systems by temporal partitioning. In International Workshop on
Operating Systems Platforms for Embedded Real-Time Applications. 24.

[35] Hermann Kopetz. 1992. Sparse Time versus Dense Time in Distributed Real-
Time Systems. In Proceedings of the 12th International Conference on Distributed
Computing Systems, Yokohama, Japan, June 9-12, 1992. IEEE Computer Society,
460–467. https://doi.org/10.1109/ICDCS.1992.235008

[36] Hermann Kopetz and Günter Grünsteidl. 1993. TTP - A Time-Triggered Protocol
for Fault-Tolerant Real-Time Systems. In Digest of Papers: FTCS-23, The Twenty-
Third Annual International Symposium on Fault-Tolerant Computing, Toulouse,
France, June 22-24, 1993. IEEE Computer Society, 524–533. https://doi.org/10.
1109/FTCS.1993.627355

[37] Hermann Kopetz andWilfried Steiner. 2022. Real-Time Systems - Design Principles
for Distributed Embedded Applications, Third Edition. Springer. https://doi.org/
10.1007/978-3-031-11992-7

[38] Simon Kramer, Dirk Ziegenbein, and Arne Hamann. 2015. Real world automo-
tive benchmarks for free. In 6th International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), Vol. 130.

[39] Jaewoo Lee, Sisu Xi, Sanjian Chen, Linh T.X. Phan, Chris Gill, Insup Lee,
Chenyang Lu, and Oleg Sokolsky. 2012. Realizing Compositional Scheduling
through Virtualization. In 2012 IEEE 18th Real Time and Embedded Technology
and Applications Symposium. 13–22. https://doi.org/10.1109/RTAS.2012.20

[40] Giuseppe Lipari and Enrico Bini. 2005. A methodology for designing hierarchical
scheduling systems. J. Embedded Comput. 1, 2 (apr 2005), 257–269.

[41] Martin Lukasiewycz, Reinhard Schneider, Dip Goswami, and Samarjit
Chakraborty. 2012. Modular scheduling of distributed heterogeneous time-
triggered automotive systems. In Proceedings of the 17th Asia and South Pacific

https://doi.org/10.1023/B:TIME.0000027934.77900.22
https://doi.org/10.1023/B:TIME.0000027934.77900.22
https://doi.org/10.1007/S11241-021-09376-1
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.1109/RTSS.2011.9
https://doi.org/10.1109/RTSS.2011.9
https://doi.org/10.23919/DATE56975.2023.10137067
https://doi.org/10.23919/DATE56975.2023.10137067
https://doi.org/10.1109/RTCSA.2016.41
https://doi.org/10.1016/J.SYSARC.2017.09.004
https://doi.org/10.1016/J.SYSARC.2017.09.004
http://www.usenix.org/events/osdi10/tech/full_papers/Broomhead.pdf
https://doi.org/10.1109/SOSE49046.2020.00016
https://doi.org/10.1109/SOSE49046.2020.00016
https://doi.org/10.1007/S11241-015-9244-X
https://doi.org/10.1109/WFCS46889.2021.9483602
https://doi.org/10.1145/2997465.2997470
https://doi.org/10.1109/ETFA.2014.7005128
https://doi.org/10.1109/EDCC.2010.18
https://doi.org/10.1145/1995376.1995394
https://github.com/jlelli/taskgen
https://doi.org/10.4230/DAGREP.8.2.122
https://doi.org/10.4230/DAGREP.8.2.122
https://doi.org/10.1109/REAL.2002.1181559
https://doi.org/10.1109/RTAS61025.2024.00010
https://doi.org/10.1145/2997465.2997492
https://doi.org/10.1145/2997465.2997492
https://doi.org/10.1109/RTSS52674.2021.00054
https://doi.org/10.1145/1851276.1851282
https://standards.ieee.org/standard/802_1Qbv-2015.html
https://standards.ieee.org/standard/802_1Qbv-2015.html
http://www.ieee802.org/1/pages/tsn.html
https://standards.ieee.org/standard/802_1AS-2020.html
https://standards.ieee.org/standard/802_1AS-2020.html
https://doi.org/10.1109/ISIE.2016.7744897
https://doi.org/10.1007/S11241-009-9088-3
https://doi.org/10.1145/1435458.1435460
https://doi.org/10.1109/ICDCS.1992.235008
https://doi.org/10.1109/FTCS.1993.627355
https://doi.org/10.1109/FTCS.1993.627355
https://doi.org/10.1007/978-3-031-11992-7
https://doi.org/10.1007/978-3-031-11992-7
https://doi.org/10.1109/RTAS.2012.20

End-to-End Schedulability of Virtualized Distributed Time-Triggered Systems RTNS 2024, November 7–8, 2024, Porto, Portugal

Design Automation Conference, ASP-DAC 2012, Sydney, Australia, January 30 -
February 2, 2012. IEEE, 665–670. https://doi.org/10.1109/ASPDAC.2012.6165039

[42] Martin Lukasiewycz, Reinhard Schneider, Dip Goswami, and Samarjit
Chakraborty. 2012. Modular scheduling of distributed heterogeneous time-
triggered automotive systems. In Proceedings of the 17th Asia and South Pacific
Design Automation Conference, ASP-DAC 2012, Sydney, Australia, January 30 -
February 2, 2012. IEEE, 665–670. https://doi.org/10.1109/ASPDAC.2012.6165039

[43] S.P. Marimuthu and S.C. Chakraborty. 2006. A Framework for Compositional
and Hierarchical Real-Time Scheduling. In 12th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA’06). 91–96.
https://doi.org/10.1109/RTCSA.2006.7

[44] Shane D. McLean, Emil A. Juul Hansen, Paul Pop, and Silviu S. Craciunas. 2022.
Configuring ADAS Platforms for Automotive Applications Using Metaheuristics.
Frontiers in Robotics and AI 8 (2022), 353. https://doi.org/10.3389/frobt.2021.
762227

[45] Ayhan Mehmed, Wilfried Steiner, and Maximilian Rosenblattl. 2017. A Time-
Triggered Middleware for Safety-Critical Automotive Applications. In Ada-
Europe.

[46] Carlo Meroni, Silviu S. Craciunas, Anaïs Finzi, and Paul Pop. 2023. Mapping and
Integration of Event- and Time-triggered Real-time Tasks on Partitioned Multi-
core Systems. In 28th IEEE International Conference on Emerging Technologies and
Factory Automation, ETFA 2023, Sinaia, Romania, September 12-15, 2023. IEEE,
1–8. https://doi.org/10.1109/ETFA54631.2023.10275547

[47] Anna Minaeva and Zdenek Hanzálek. 2022. Survey on Periodic Scheduling
for Time-triggered Hard Real-time Systems. ACM Comput. Surv. 54, 1 (2022),
23:1–23:32. https://doi.org/10.1145/3431232

[48] Aloysius K. Mok, Alex Xiang Feng, and Deji Chen. 2001. Resource Partition
for Real-Time Systems. In Proceedings of the 7th IEEE Real-Time Technology and
Applications Symposium (RTAS 2001), 30 May - 1 June 2001, Taipei, Taiwan. IEEE
Computer Society, 75–84. https://doi.org/10.1109/RTTAS.2001.929867

[49] Andreas Motzkus and Mehmet Oezer. 2016. PikeOS Safe Real-Time Scheduling:
Adaptive Time-Partitioning Scheduler for EN 50128 certified Multi-Core Platforms.
Technical Report. SYSGO. 6 pages. https://www.sysgo.com/whitepapers

[50] Roman Obermaisser. 2009. Time-Triggered Communication. In Networked Em-
bedded Systems - Volume 2 of the Embedded Systems Handbook, Richard Zurawski
(Ed.). CRC Press, 14. https://doi.org/10.1201/9781439807620.CH14

[51] Ramon Serna Oliver and Silviu S. Craciunas. 2016. Hierarchical scheduling
over off- and on-chip deterministic networks. SIGBED Rev. 13, 4 (2016), 14–19.
https://doi.org/10.1145/3015037.3015039

[52] Ramon SernaOliver, Silviu S. Craciunas, andWilfried Steiner. 2018. IEEE 802.1Qbv
Gate Control List Synthesis Using Array Theory Encoding. In IEEE Real-Time
and Embedded Technology and Applications Symposium, RTAS 2018, 11-13 April
2018, Porto, Portugal, Rodolfo Pellizzoni (Ed.). IEEE Computer Society, 13–24.
https://doi.org/10.1109/RTAS.2018.00008

[53] Traian Pop, Petru Eles, and Zebo Peng. 2002. Holistic scheduling and analysis
of mixed time/event-triggered distributed embedded systems. In Proceedings of
the Tenth International Symposium on Hardware/Software Codesign, CODES 2002,
Estes Park, Colorado, USA, May 6-8, 2002, Jörg Henkel, Xiaobo Sharon Hu, Rajesh
Gupta, and Sri Parameswaran (Eds.). ACM, 187–192. https://doi.org/10.1145/
774789.774828

[54] Traian Pop, Petru Eles, and Zebo Peng. 2003. Schedulability Analysis for Dis-
tributed Heterogeneous Time/Event Triggered Real-Time Systems. In 15th Eu-
romicro Conference on Real-Time Systems (ECRTS 2003), 2-4 July 2003, Porto, Por-
tugal, Proceedings. IEEE Computer Society, 257–266. https://doi.org/10.1109/
EMRTS.2003.1212751

[55] Traian Pop, Paul Pop, Petru Eles, Zebo Peng, and Alexandru Andrei. 2006. Timing
Analysis of the FlexRay Communication Protocol. In 18th Euromicro Conference
on Real-Time Systems, ECRTS’06, 5-7 July 2006, Dresden, Germany, Proceedings.
IEEE Computer Society, 203–216. https://doi.org/10.1109/ECRTS.2006.31

[56] Jan Ruh, Wilfried Steiner, and Gerhard Fohler. 2021. Clock Synchronization in
Virtualized Distributed Real-Time Systems Using IEEE 802.1AS and ACRN. IEEE
Access 9 (2021), 126075–126094. https://doi.org/10.1109/ACCESS.2021.3111045

[57] Jan Ruh, Wilfried Steiner, and Gerhard Fohler. 2023. IEEE 802.1AS Multi-
Domain Aggregation for Virtualized Distributed Real-Time Systems. In 53rd
Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN 2023 - Supplemental Volume, Porto, Portugal, June 27-30, 2023. IEEE, 70–76.
https://doi.org/10.1109/DSN-S58398.2023.00027

[58] Florian Sagstetter, Sidharta Andalam, Peter Waszecki, Martin Lukasiewycz,
Hauke Stähle, Samarjit Chakraborty, and Alois C. Knoll. 2014. Schedule In-
tegration Framework for Time-Triggered Automotive Architectures. In The 51st
Annual Design Automation Conference 2014, DAC ’14, San Francisco, CA, USA,
June 1-5, 2014. ACM, 20:1–20:6. https://doi.org/10.1145/2593069.2593211

[59] Insik Shin and Insup Lee. 2003. Periodic resource model for compositional real-
time guarantees. In RTSS 2003. 24th IEEE Real-Time Systems Symposium, 2003.
2–13. https://doi.org/10.1109/REAL.2003.1253249

[60] Insik Shin and Insup Lee. 2004. Compositional real-time scheduling framework.
In 25th IEEE International Real-Time Systems Symposium. 57–67. https://doi.org/
10.1109/REAL.2004.15

[61] Wilfried Steiner. 2010. An Evaluation of SMT-Based Schedule Synthesis for Time-
Triggered Multi-hop Networks. In Proceedings of the 31st IEEE Real-Time Systems
Symposium, RTSS 2010, San Diego, California, USA, November 30 - December 3,
2010. IEEE Computer Society, 375–384. https://doi.org/10.1109/RTSS.2010.25

[62] Wilfried Steiner, Günther Bauer, Brendan Hall, and Michael Paulitsch. 2011.
TTEthernet: Time-Triggered Ethernet. In Time-Triggered Comm. CRC Press.

[63] Henrik Theiling. 2013. PikeOS and Time-Triggering. Technical Report. SYSGO. 6
pages. https://www.sysgo.com/whitepapers

[64] Jia Xu and David Lorge Parnas. 2000. Priority Scheduling Versus Pre-Run-
Time Scheduling. Real Time Syst. 18, 1 (2000), 7–23. https://doi.org/10.1023/A:
1008198310125

[65] Jungwoo Yang, Hyungseok Kim, Sangwon Park, Changki Hong, and Insik Shin.
2011. Implementation of compositional scheduling framework on virtualization.
SIGBED Rev. 8, 1 (mar 2011), 30–37. https://doi.org/10.1145/1967021.1967025

[66] Licong Zhang, Dip Goswami, Reinhard Schneider, and Samarjit Chakraborty.
2014. Task- and network-level schedule co-synthesis of Ethernet-based time-
triggered systems. In 19th Asia and South Pacific Design Automation Conference,
ASP-DAC 2014, Singapore, January 20-23, 2014. IEEE, 119–124. https://doi.org/10.
1109/ASPDAC.2014.6742876

https://doi.org/10.1109/ASPDAC.2012.6165039
https://doi.org/10.1109/ASPDAC.2012.6165039
https://doi.org/10.1109/RTCSA.2006.7
https://doi.org/10.3389/frobt.2021.762227
https://doi.org/10.3389/frobt.2021.762227
https://doi.org/10.1109/ETFA54631.2023.10275547
https://doi.org/10.1145/3431232
https://doi.org/10.1109/RTTAS.2001.929867
https://www.sysgo.com/whitepapers
https://doi.org/10.1201/9781439807620.CH14
https://doi.org/10.1145/3015037.3015039
https://doi.org/10.1109/RTAS.2018.00008
https://doi.org/10.1145/774789.774828
https://doi.org/10.1145/774789.774828
https://doi.org/10.1109/EMRTS.2003.1212751
https://doi.org/10.1109/EMRTS.2003.1212751
https://doi.org/10.1109/ECRTS.2006.31
https://doi.org/10.1109/ACCESS.2021.3111045
https://doi.org/10.1109/DSN-S58398.2023.00027
https://doi.org/10.1145/2593069.2593211
https://doi.org/10.1109/REAL.2003.1253249
https://doi.org/10.1109/REAL.2004.15
https://doi.org/10.1109/REAL.2004.15
https://doi.org/10.1109/RTSS.2010.25
https://www.sysgo.com/whitepapers
https://doi.org/10.1023/A:1008198310125
https://doi.org/10.1023/A:1008198310125
https://doi.org/10.1145/1967021.1967025
https://doi.org/10.1109/ASPDAC.2014.6742876
https://doi.org/10.1109/ASPDAC.2014.6742876

	Abstract
	Acknowledgments
	1 Introduction
	2 Related Work
	3 System Model
	3.1 Network and Communication Model
	3.2 Task Model
	3.3 System Virtualization Model

	4 Correctness Constraints
	4.1 Task Correctness Constraints
	4.2 End-to-End Correctness Constraints
	4.3 System Virtualization Constraints
	4.4 Network Constraints

	5 Offline Scheduling
	5.1 Incremental SMT-based Scheduler
	5.2 Simulating Earliest-Deadline-First

	6 Experiments
	6.1 Increasing System Size
	6.2 Increasing Utilization

	7 Conclusion
	References

