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Abstract—Container-based virtualization is a lightweight de-
ployment solution within heterogeneous Fog and Edge Comput-
ing (FEC) systems. When used in real-time FEC applications,
orchestration is needed to adapt to variations in system behavior,
transient overload scenarios, and changes in resource availability.
Container-based orchestration can efficiently and automatically
deploy, redimension, and relocate containers according to the
measured real-time performance of critical applications. This
paper presents a highly configurable orchestration framework
for real-time containers that improves the scalability and ex-
pressiveness of state-of-the-art approaches. We propose three
different heuristics for the offline placement and dimensioning
of containers on nodes that scale with the size of modern
industrial systems and enhance the decision-making of the online
hierarchical controller to include time-utility functions which can
model more accurately the usefulness of results in the case of
deadline misses. We show our framework’s performance and
efficiency using synthetic test cases and a real-world test bed.

Index Terms—real-time container, orchestration, virtualization

I. INTRODUCTION

Fog and Edge Computing (FEC) unite the advantages
of cloud computing with the ability to transfer low-latency
control functions to edge nodes. This helps reduce the com-
munication latency for critical messages, which is crucial for
real-time applications, e.g., in industrial automation [1], [2].
Virtualization in FEC improves the deployment and adaptation
of services based on the current state and capabilities of the
nodes [3]. Container-based virtualization has the benefits of
smaller image sizes and faster startup times [4], offering a
lightweight deployment within heterogeneous cloud or fog
environments with less overhead than full virtualization. As a
result, containerization has become the preferred way to pack-
age and deploy applications in FEC [5], [6]. Container-based
virtualization facilitates FEC because additional instances can
be quickly started and migrated between server instances as
needed depending on an application’s demand, and resources
can be optimized by removing unnecessary instances [7].
Hence, in industrial automation, container-based virtualization
and orchestration have a significant role in fulfilling Industry
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4.0 requirements for flexibility and resource efficiency [5],
[8]–[10] but can also be beneficial for other mixed-criticality
domains like, e.g., mobile machinery or energy applications.

GNU/Linux operating systems realize containers using
namespaces and control groups (cgroups), isolating and pro-
viding access limitations to applications (tasks) when access-
ing resources such as CPU, memory, or IO [11]. However,
containerization cannot guarantee meeting critical deadlines
in real-time applications. Abeni et al. [11] extended the
rt_group_sched feature of the Linux kernel to enable the
hierarchical scheduling of containers so that containers are
scheduled using earliest-deadline first (EDF), and tasks within
the containers use a fixed-priority (FP) scheduler. Furthermore,
group scheduling allows the user to reserve a period and a
quota of CPU time for each container. However, these methods
are insufficient to fully utilize containerization in the real-time
domains since variations in runtime overhead, runtime changes
in workloads, and resource availability changes often lead to
a degradation in real-time behavior. An orchestration tool is
necessary to automatically deploy, redimension, and relocate
containers to maintain their real-time performance at runtime.

Juliàn et al. [12] reviewed automated management in cloud-
based architectures aimed at improving network latency, power
consumption, and overheads. The authors propose a new
classification of state-of-the-art cloud nodes based on their
self-* capabilities, e.g., self-configuration, self-orchestration,
self-adaptation, or self-learning. The latter act as intelligent
resource managers in a virtualized, platform-agnostic meta-
operating system and allow the deployment of multiple ser-
vices in the IoT edge-cloud continuum. We extend this clas-
sification with a concept of self-real-timeliness, ensuring the
system’s real-time performance based on the so-called time-
utility function to orchestrate, schedule, and monitor real-time
workloads. Struhár et al. [5], [13] present an orchestration
framework that uses an offline SMT-based approach to create
an initial dimensioning of containers on nodes, and propose a
hierarchical online control approach for redimensioning and
moving containers based on the runtime performance and
system load. However, the approach in [5], [13] suffers from
the downside that the offline phase does not scale for real
industrial systems and that the online adaptation of containers
is based on simple metrics that do not capture the utility of
computation results after a deadline miss.
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In this paper, we present a highly configurable orchestration
framework that uses a similar control hierarchy as in [5],
with the following main improvements. We (1) redesign,
reimplement, and optimize the controller hierarchy from [5],
(2) propose 3 different heuristics for the offline placement
and dimensioning phase that scale with the size of modern
industrial systems, and (3) enhance the decision-making of the
online hierarchical controller to include time-utility functions
which can model more accurately the usefulness of results
in the case of deadline misses. We show the scalability
of our offline heuristics and the performance of our online
orchestration based on time-utility functions using synthetic
test cases and a real-world test bed.

II. RELATED WORK

The Linux kernel has been enhanced with real-time capa-
bilities through the PREEMPT RT patch [14], a Co-Kernel
approach with a custom API [15], and hierarchical schedul-
ing [11] which schedules task containers via EDF scheduler
and the tasks within the container via FP.

Several works study real-time container orchestration. A
survey of real-time containerization and orchestration ap-
proaches is presented in [16]. Fiori et al. [17] adapt the
orchestration framework Kubernetes such that timing guar-
antees are fulfilled using the HCBS patch presented in [11],
similar to our work. Wang et al. [18] evaluate different RT
container orchestration setups using FogBus2 [19] and K3s:
Lightweight Kubernetes [20]. Singh et al. [21] use Docker
Swarm in a game-theoretic approach, which includes deadlines
and security aspects in the orchestration. Yin et al. [22]
introduce a mechanism for deciding whether to offload tasks
to the cloud or run them on local edge nodes for industrial
fog-computing scenarios. Govindaraj et al. introduced in [23]
a container migration scheme that reduces the downtime of the
containers. Krüger et al. [24] used RT container orchestration
to mitigate failures in power-grid systems.

Finally, our work builds upon Struhár et al. [5], who present
a hierarchical resource orchestration framework that calculates
initial container placements in an offline-phase via an SMT-
based approach and relocates containers in the online-phase
based on simple metrics. We have not only introduced a more
scalable heuristic-based offline step and extended the online
control decisions using time-utility functions (see below) but
also redesigned and rebuilt the online phase while keeping a
similar hierarchical control structure. The approach in Struhár
et al. is entirely implemented in the Kernel, and thus, it
cannot be extended easily and is less portable. We kept the
changes to the Kernel to a minimum, adding only three hook
functions, and implemented the logic in a loadable kernel
module. Furthermore, instead of having a separate Container-
Level-Controller that adapts the budget of a container, we
implemented this functionality in the Node-Level-Controller
(NLC), which is running in userspace as opposed to the kernel-
level implementation in [5].

III. SYSTEM MODEL

We use the notation, correctness conditions, and cost func-
tion from [5], [25]. We assume a system with n homogeneous
nodes and m containers. Every container πk, k = 1, . . . ,m has
a set of Boolean variables vk1 , . . . , v

k
n specifying whether the

container is assigned to node n. Pk is the containers period and
Qk its budget. fj , j = 1, . . . , n represents a node in the system.
Cj

i is the worst-case execution time (WCET) of task i on
node j, which means the tasks can have different WCETs on
different nodes. Each container πk has a predefined set of tasks
denoted with T k. The cost function initially defined in [25]
and adapted in [5] enables a design-time parametrization via
c1 and c2, trading-off the importance of the context switch
overhead σj in node fj against the overhead of the container
dimensioning in terms of budget and period:

min
{Qk,Pk,vk

1 ,...,v
k
n|k=1,...,m}

c1

m∑
k=1

∑n
j=1 v

k
j σj

Pk
+ c2

m∑
k=1

Qk

Pk
(1)

For the offline correctness conditions and the complete formal
model, we refer the reader to [5]. The overhead σj can usually
be measured using instrumentation and is dependent on e.g.
number of tasks, macrotick, hardware architecture, etc. [26].

IV. OFFLINE CONTAINER PLACEMENT AND
DIMENSIONING

The offline phase aims to find an initial placement of con-
tainers to nodes and a correct dimensioning in terms of budget
and period for each container. This problem is similar to the
bin-packing problem and is, hence, NP-complete. In [5], the
authors found containers’ initial placement and dimensioning
using an optimal method via SMT solver that does not scale for
larger systems. We propose three heuristic approaches to solve
the initial placement and dimensioning problem: a greedy
algorithm, a metaheuristic based on simulated annealing, and
a compositional SMT approach.

A. Simulated Annealing (SA)

Simulated Annealing [27] is a well-known metaheuristic
used in search problems that tend to get stuck in local minima.
In each step, a new neighbor solution (neighbor()) is
computed that changes a subset of parameters of the current
candidate solution, and the cost function is evaluated. If the
result is better, the new solution is saved and otherwise
discarded. However, worse solutions are also accepted to over-
come local minima with a certain probability. This probability
depends on a temperature value that decreases every iteration;
hence, the chance of accepting worse solutions decreases. The
algorithm can stop after a fixed amount of iterations or after the
cost function evaluates to a value below a specified threshold.

The Simulated Annealing-based solver uses the Dual An-
nealing function from the scipy package [28]. Every con-
tainer has a variable for its node, quota, and period. The
neighbor() function uses the Cauchy-Lorentz visiting dis-
tribution from [28], [29]. Furthermore, we implement two
variants for the simulated annealing solver:



Minimum: The search space limit for quota and period of
each container is the minimal period of the container’s tasks.
Hyperperiod: The search space limit for quota and period of
each container is the hyperperiod of the container’s tasks.
Hypothetically, we expect that the hyperperiod variant yields
better results since all possible periods are considered. How-
ever, the resulting search space is larger so that the runtime
becomes too long for the variant to deliver feasible results for
large systems (c.f. Section VI).

B. Greedy Algorithm (Greedy)

The greedy algorithm reduces the search space, considering
only a fraction of the possible container periods and quotas.
We acknowledge that this approach does not yield an optimal
solution, yet it is designed to be scalable for large systems.

A random container-to-node assignment is generated at the
start of each search run. If it is infeasible in terms of the
memory requirements, a new assignment is generated until the
constraints are satisfied. The algorithm selects a list of periods
for the search for each container, iterates over the list, and tries
to assign the same period to all containers. An initial quota is
guessed by setting it to the utilization of the container. Next,
the algorithm attempts to decrease the container utilization as
much as possible by subtracting the maximum quota that is
known to be insufficient, halving the result, and checking if
the tasks inside the container are schedulable with the given
quota. If the quota does not allow a feasible scheduling, the
quota is doubled. This procedure continues until the candidate
quota has already been considered. In the end, the quota is set
to the lowest quota for which the tasks in the container are
schedulable. If the whole system is schedulable, the algorithm
terminates; otherwise, a new search run is started up to a given
maximum runs, after which the input is considered infeasible.
The upper limit of the quota and period of a container is the
hyperperiod of the tasks. The step distance is set to 50µs.

The greedy solver provides two variants as well:
Standard: The algorithm begins its search for solutions at the
lower end of the search space.
Inverted: The algorithm starts to search for solutions at the
upper end of the search space. This way, the cost function
can be minimized further if the context-switching overhead is
considered because the resulting periods are larger.

C. Compositional SMT (C-SMT)

We enhanced the SMT-based method presented in [5] with
an outer metaheuristic loop that divides the system-level
problem into subproblems for each container. First we find
the quota and period for every container independently and
then we solve the allocation problem with the found container
values. This approach reduces the runtime compared to the
other presented solvers since fewer constraints are given to the
SMT solver, reducing the complexity of each run, as shown
in Section VI. Here, we focus on computing allocations for
homogeneous systems; however, we note that this approach
can be extended for heterogeneous systems by computing the
(quota, period) pair for each type of node to account for the

individual computation times and scheduling overheads. The
resulting list of pairs can then be used in the second step for
the allocation. This solver provides a parameter that allows
tuning the optimality of the allocation. It specifies for each
container the difference (maximum error) between the current
cost function value compared to the previously found optimal
solution. This can be helpful for high utilization systems where
it may be useful to reduce the bandwidth of every container as
much as possible. However, finding optimal allocations results
in a longer runtime since the SMT solver takes more iterations
to arrive at a lower-cost solution.

V. ONLINE CONTAINER ORCHESTRATION

In [30], task response times are used as a metric to
detect a real-time performance degradation that triggers the
re-dimensioning or relocation of a container. This so-called
temporal error only captures if a deadline has been met or
missed, hence assuming hard task deadlines. However, there
are processes in real-time systems with firm or soft deadlines
that still maintain utility even if individual job deadlines
are missed. Using temporal errors for container adaptations
renders it impossible to reflect this maintained utility upon
a missed deadline or to capture the overall system utility.
Therefore, we improve upon [5] by introducing a time-utility
(TU) function that assigns each containerized task a semantic
value capturing the degree of temporal error.

A. Time-Utility Functions

A time-utility function (TUF) assigns a utility to the result
of a task depending on its completion time, even after the
deadline has expired. The usefulness of the result, therefore,
depends on the response time of the task [31]. In the initial
phase of TUF-based scheduling, only maximal utility accrual
(UA), i.e. the sum of the total utility, concerning the timeliness
of the tasks has been considered. However, further parame-
ters, such as energy consumption or predictability, have been
added, and various TUF/UA models have been studied in the
academic literature, e.g., [32]–[34].

We use TUFs commonly used in real-world applica-
tions [32] that yield 100.0 if the task finishes before its dead-
line; otherwise, they monotonically decrease until reaching a
utility of zero. We define the tardiness or temporal error δji of
a task τi’s job j as the difference between its completion time
and its deadline, i.e., a task’s temporal error is negative if
the task completed before the deadline and zero or positive
if it missed its deadline. Therefore, a time utility function
returns a task’s utility given its temporal error. We consider
the following families of functions:
Step We use a step function to model hard deadlines, i.e.,
δ > 0 as illustrated in Figure 1a:

step(δ) =

{
100, if δ ≤ 0

0, otherwise

Linear We use a linear function with slope −m to model
tasks for which the decline of the time utility is proportional
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Fig. 1: Visualizing the TUFs considered in this work.

to the temporal error δ of a task’s job, e.g., tasks with soft
deadlines, as illustrated in Figure 1b:

linear(δ) =

{
100, if δ ≤ 0

max{−m · δ + 100, 0}, otherwise

Exponential We use an exponential function with exponential
decay factor −m to model tasks for which the time utility
degrades more rapidly with the temporal error δ of a task’s
job, as illustrated in Figure 1c:

exp(δ) =

{
100, if δ ≤ 0

exp (−m · δ) ∗ 100, otherwise

The choice of the parameter m for each task determines the
function’s shape by spanning the interval between the deadline
and the instant when the TUF degrades to zero, also referred
to as the expiration time [31]. Note that both the function
type and the parameter m depend significantly on the specific
application. For instance, in Maynard et al. [35], the authors
illustrate how they derived application-specific time-utility
functions for an air-defense application while developing a
command, control, and battle management system.

B. Implementation
We have redesigned and implemented the hierarchi-

cal orchestrator framework utilizing TUFs from scratch in
GNU/Linux. However we retain a similar controller struc-
ture as proposed in [5]. Figure 2 shows the three main
components, the Cluster-Level-Controller (CLC), the Node-
Level-Controller (NLC), and the Linux kernel module (KM),
containing the logic of the online orchestration phase.

1) Cluster-Level-Controller (CLC): We have implemented
the communication between the CLC and the NLC via bidirec-
tional HTTP requests. The CLC configures registered NLCs
and can issue to start, to stop, and to relocate a container
on registered nodes by communicating with the respective
NLCs. Initially, the CLC starts containers by sending start
commands to the NLCs according to an allocation found in
the offline phase. In the online phase, or during runtime,
we have implemented a simple relocation policy based on
the current CPU utilization in the cluster. When a NLC
demands relocation of a container due to a diminished TU,
the CLC requests the current CPU utilization from NLCs
running on registered nodes. The CLC decides to relocate
the container with degraded performance to the node with the
lowest CPU utilization and stops the container on the node it
was previously running on. If there is no node with lower CPU
utilization than the node the container is currently assigned to,
the CLC aborts the relocation.

Assignment from Offline Phase

Cluster-Level-Controller (CLC)

• Sends commands to the Node-Level-Controller
• Chooses alternative node in case of migration Network Interface

Node Node-Level-Controller (NLC) Network Interface

Container control commands

• Gets temporal errors from KM, calculates TU, and sends it back to KM
• Marks containers for relocation and notifies CLC
• Starts/Stops containers
• Starts/Stops KM /proc Interface

Userspace

Kernelspace

C0

T0

Cn

Tn

Start/Stop

Yield

Kernel Module (KM) /proc Interface

• Reports the average temporal error of the containers to the NLC
• Reports the CPU bandwidth used by the containers to the NLC
• Resizes the containers based on the TU calculated by the NLC
• Monitors which containers are running

Temporal errors and TUsStart/Stop

Fig. 2: Architecture Diagram Online Phase

2) Node-Level-Controller (NLC): After start up the NLC
awaits to receive its configuration from the CLC containing,
e.g., KM parameters, the relocation interval, or the update
interval between the NLC and the KM. The relocation interval
determines a NLC’s periodic checks if a container needs
relocation, i.e., if a container’s time-utility (TU) dropped below
a threshold. We can pick the behavior of the relocation interval
from three available options:
Fixed: A fixed value specified in seconds. Experimental eval-
uation indicated that a value of five seconds yields good results
that prevents oscillating relocation.
Minimum: Equal to the smallest task period on the node.
Maximum: Equal to the greatest task period on the node.
If the NLC detects multiple containers for relocation in the
same period, we introduce a lowest utility first policy where
the container with the lowest utility is chosen for relocation.

Just as the relocation interval, the update interval determines
the frequency with which the NLC communicates with the
kernel module. The update interval depends on the task
periods. There are three options to derive the update interval:
Minimum: Equal to the smallest task period on the node.
Maximum: Equal the greatest task period on the node.
Medium: Equal to the difference between the greatest and
smallest period divided by 2.
If not active yet, the NLC loads the KM and starts the update
thread that periodically communicates with the KM using the
configured update interval. The communication via the /proc
filesystem consists of two steps. First, the NLC reads each
task’s average temporal error, the container bandwidth and
quota used during the last period, and if the KM detected any



container that should be relocated. Then, the NLC uses the
average temporal errors to calculate the time-utilities (TUs) of
all tasks, sorts the TUs in ascending order, and writes them to
the KM. As a result, in the KM the tasks with the lowest TU
get a quota increase first, and tasks with a higher TU might not
receive an increased quota to improve their TU if the CPU has
no more capacity (the minimal quota min_quota is 100µs).

3) Kernel Module (KM): The function of the KM is
twofold. Firstly, the KM keeps track of hosted containers
and monitors each container’s tasks’ temporal error. Secondly,
the KM adapts each container πk’s CPU quota Qk when
receiving tasks’ updated TUs from the NLC via the /proc
filesystem. When calculating a new quota Q∗

k for containers
πk, k = 1, . . . ,m, we differentiate two cases: (1) If a task’s TU
received from the NLC is 100, i.e., the task’s jobs completed
earlier than their deadlines, the KM reduces the hosting
container’s quota, or (2) if the TU falls below 100 we increase
a container’s quota.

For case (1), a TU of 100 indicates that we can decrease
its hosting container’s quota so that the new quota is:

Q∗
k = max

(
Qk − gr ·∆k

100
,min quota

)
Here, gr is a configurable parameter that specifies how ag-
gressively the KM reduces a container’s quota (set to 0.05 in
our experiments). Furthermore, a container’s average temporal
error in an arbitrary interval [tl−1, tl] since the (l − 1)-th
quota update is determined by the sum of its tasks τi ∈ T k

individual average temporal errors ∆k
i . Each task τi spawns

|J | = ⌊ tl−tl−1

Ti
⌋ jobs during that interval, each associated

with a temporal error δji , j ∈ J . Therefore, a task’s average
temporal error is given by ∆k

i = 1
|J |

∑
j∈J δji , i.e., the sum of

the temporal errors δji of the task’s jobs divided by the number
of jobs |J | in the interval [tl−1, tl]. Lastly, we scale each
container’s tasks’s average temporal errors to their container’s
replenishment period Pk:

∆k =
1

|T k|
∑

τi∈T k

∆k
i

max( Ti

Pk
, 1)

In the (2) case, if a task’s TU lies within [0, 100), its
container’s quota is increased to reduce its temporal error to:

Q∗
k = Qc +

gi ·∆k · (100− 1
|T k|

∑
τi∈T k TUi)

1002

As for the quota decrease, the parameter gi is configurable
and specifies the slope of the quota increase. Note that
the formula for quota increase uses the container’s average
temporal error to scale the quota increase given by the inverse
of the container’s tasks average TU. As a result, if several
tasks have the same absolute TU, the quota of those hosting
containers with a high average temporal error is increased
more.

C. Modifications to the Linux Kernel

We have kept the modifications to the Linux kernel to a
minimum yet it was necessary to add three hooks into the

Linux kernel patched with the Hierarchical Constant Band-
width Server (HCBS) [11]. We did not use the PREEMPT RT
patch [14] since it is incompatible with HCBS [11]. When our
KM is loaded, we inject the three hooks calling the KM at the
following locations in the kernel via function pointers:
Yield sched_yield System Call Hooks A containerized
real-time task invokes the yield system call to indicate job
completion. We add a hook to the yield system call of the
Linux scheduler subsystem taking a timestamp that indicates
the instant of job completion. By placing the hook in the
system call definition we ensure accurate temporal errors. We
insert an additional hook in the fixed-priority (FP) scheduler
specific sched_yield call in which we use the previously
created timestamp to calculate a jobs temporal error.
Free Real-Time Group Hook When a container stops exe-
cution there is a call to the free_rt_sched_group of the
FP scheduler. We add a hook to the function to ensure freeing
of KM resources used internally for tracing timing metadata.

VI. EXPERIMENTS

We performed separate experiments to evaluate the offline
phase and the online phase.

A. Offline Container Dimensioning

We evaluate our proposed methods from Section IV that
have been implemented in python3 in terms of runtime and
solution quality, comparing them to the SMT-based approach
from [5]. All offline dimensioning experiments were run on
a Dell Latitude 5420 with an Intel(R) 4-Core(TM) i7-1185G7
@ 3.00GHz CPU, 32 GB RAM, and Windows 10. For the
following results, we set the target system utilization to 50%.
For each system size, we aggregated the results of 100 runs to
retrieve the average runtime. In the case of simulated annealing
and the greedy solvers, we compute ten different allocations
for each of the 100 systems to account for randomness in
the algorithms. For each test case, we used four tasks per
container. Figure 3 shows the average runtime with error bars
(y-axis) of all solvers for different system sizes (x-axis). For
the basic SMT solution [5], no cost function is taken into
account since adding the cost function to find an optimized
solution would increase its runtime additionally. Furthermore,
we set a timeout of 300 seconds for the basic SMT approach
depicted as a red line. For the Simulated Annealing (SA)
heuristic, we selected the variant that uses the minimum task
period occurring in a container to limit the search space since
we could not solve even small systems in under ten minutes
when considering the hyperperiod of a container’s tasks as
the search space limit for quota and container period. In the
benchmark 50 set for the smallest systems with size 1-3-12,
the search space is approximately 1.75714∗1011 times bigger
when using the hyperperiod as a limit instead of the minimum
task period. For the greedy solver, the non-inverted version
was chosen, and for C-SMT, the maximum error was set to
0.1 to get a feasible solution quickly without spending too
much time on optimization.
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The basic SMT method [5] exhibited the worst runtime.
For all system sizes larger than 4-12-48, the basic SMT
approach [5] times out at 300 seconds, and the data points
are not shown in the plot. We can see that the runtime of the
SA solver performs better, yet an exponential trend indicating
bad scalability with growing system size is visible. We trace
this back to the neighbor function that is part of the scipy
package [28] and does not fit the problem well. Finding better
suited neighbor functions is out of the scope of this paper.
Lastly, the greedy solver and the C-SMT approach exhibit a
stable and low runtime for increasing system sizes. In Figure 4,
we zoom in onto both approaches and compare the normal and
the inverted greedy solvers to C-SMT. The C-SMT approach
scales better showing only a small increase in runtime for
growing system sizes compared to the greedy approaches that
do show an increased runtime for bigger systems on this scale.

Only the runtime is not sufficient to evaluate the perfor-
mance of a solver. In addition, we evaluate the quality of the
found solutions utilizing the cost function introduced in Equa-
tion (1) as a metric. Figure 5 compares the cost in an optimal
scenario without scheduling overhead σj (c1 = 0, c2 = 1.0)
with a scenario that weighs scheduling overhead and the
minimal container budget and period equally (c1 = c2 = 0.5).

For the basic SMT solver we compare two implementations.
The unoptimized SMT solver (SMT Unopt.) does not consider
the cost function in its constraints. In the second implementa-
tion (SMT Opt10), after finding and evaluating the cost of a
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Fig. 5: Solver Qualities with and without overhead

solution, we set the found cost as a new minimum constraint
for the solution quality and start the next iteration. We repeat
the process for ten iterations.

In the first scenario illustrated in Figure 5a, not consider-
ing scheduling overhead, we observe similar cost of found
solutions across solvers that linearly increase with system
size. However, a trend is visible indicating an increasing gap
between the cost of solutions found by the Greedy and C-SMT
solvers compared to the basic SMT and SA solvers.

Figure 5b visualizes the second scenario, we can see that
both basic SMT approaches perform badly finding solutions
with high cost. We explain this with the basic SMT solvers
selecting solutions with small period and quota first resulting
in high CPU utilization and cost. An incremental approach
does not improve this behavior if the number of iterations
remains low and if we allow more iterations the long runtime
renders this approach unfeasible as indicated by both basic
SMT approaches not finding solutions within five minutes
for system sizes beyond (4-12-48). The Greedy, SA, and C-
SMT solvers all find comparable low-cost solutions for all
tested system sizes when weighing scheduling overhead and
the minimal container budget and period equally. We find that
SA and Greedy find solutions with longer periods resulting
in lower cost compared to the short period solutions found
by the basic SMT approaches. To analyze the quality of the
Compositional SMT solver (C-SMT), we set the maximum
error of the cost function to 0.000001. This led to the best
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Fig. 6: Scenario 1 - Task 9: Maximum Response Time per
half-second and Average TU per half-second over Time
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Fig. 7: Scenario 2 - Task 9: Maximum Response Time per
half-second and Average TU per half-second over Time

results compared to all other solvers but at the cost of
additional runtime. When the scheduling overhead was not
considered, the runtime increased on average by a factor of
seven compared to our runtime experiments.

We can see from the experiments that our three proposed
heuristics scale well with increasing system size compared to
the SMT-based method presented in [5]. Furthermore, we show
that the C-SMT solver exhibits a trade-off between the quality
of the solution and the runtime scaling well with increased
system size.

B. Online Container Orchestration

We executed the CLC in an Ubuntu 22.04.3 LTS VMWare
Workstation 16.2.5 build-20904516 virtual machine on the
same Dell Latitude laptop that we used for the previous
experiments. For the cluster we used two Nerve MFN100 edge
computing devices [36] also running Ubuntu 22.04.3 LTS.
Node 1 comes with an Intel(R) Atom(TM) Processor E3940
@ 1.60GHz and 4 GiB of RAM and node 2 with an Intel(R)
Atom(TM) Processor E3950 @ 1.60GHz and 8 GiB of RAM.
We connected node 1, node 2, and the VM executing the
CLC via the built-in Ethernet switch of node 1. For the online
experiments, we used one task per container, where the task
runs within a Docker container simulating a periodic workload
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Fig. 9: Scenario 3 - Task 5: Maximum Response Time per
half-second and Average TU per half-second over Time

by iterating through a loop. The number of iterations correlates
to the desired WCET. We derive the actual execution time from
the upper bound used in the offline phase (offline_bound)
using an exponential tail Gumbel distribution [37], [38]. In
practice, it is often too complex or costly to calculate the ac-
tual worst-case execution time (WCET), and a measurement-
based approach is used where the application is profiled with
many different inputs [39]. The resulting maximal observed
execution time (MOET) is only correct for the tested inputs
and may underestimate the WCET [39]. We have added a
parameter called WCET_scaler, which specifies the relation
between the given WCET and the MOET. If the parameter is,
e.g., 0.8, the task may need up to 20% longer than the given
upper bound to execute. Our parameter, hence, specifies how

well each task was profiled: true WCET =
offline bound
WCET scaler

.

We evaluated the online phase with the following scenarios:

1) 10 containers, WCET_scaler = 0.6, System utilization
is at 70%, linear TU

2) 10 containers, WCET_scaler = 0.261856, System uti-
lization is at 70%, linear TU

3) 7 containers, WCET_scaler = 0.261856, Utilization is
at 50%, step TU, node 1 at 100%, node 2 at 0%.

The value 0.261856 for the WCET_scaler is the expected



value of the Gumbel distribution. These scenarios represent
those cases in which tasks were poorly profiled.

Figure 6 shows the graph of the response time of a selected
task and its TU over time. For this scenario, the interval of
the TU evaluation in the NLC was set to medium. For node 1,
on which the task was running, this was about 60 ms. We
aggregated the data points for each half-second interval to
keep the plots meaningful. For the response times, we plot
the maximum value of the interval; for the TU, we plot the
average value. It is also possible that the response time graph
indicates missed deadlines, but the TU is still 100% because
the TU is not calculated after each task period. If response
times around a missed deadline are short enough, they can
compensate for the miss, and the TU is still maximal.

A further reduction of the WCET-scaler led to constant
deadline misses and a significantly reduced TU. Figure 7
shows the response time and TU graph of the same task.
However, the CLC could not relocate any container.

To demonstrate the relocation feature of the online phase,
we started containers only on node 1. Because of the low
WCET_scaler value, a lot of tasks missed their deadlines.
Container C6 was relocated immediately after startup. Con-
tainer C5 was relocated after about 70 seconds (Figure 9)
and C3 after about 180 seconds. Figure 8 contains a graph
of the quota used on node 2. The quota jumps indicate that a
container was relocated to the node.

VII. CONCLUSION

We have extended and improved existing work on
hierarchical-based container orchestration for real-time het-
erogeneous FEC systems, introducing a highly configurable
orchestration framework for real-time containers. We have
proposed three different heuristics for the offline placement
and dimensioning of containers that overcome the scalability
issues of SMT- or ILP-based approaches. Furthermore, we
have added time-utility functions to the decision-making of the
online hierarchical controller, enabling more complex system
models for the utility of results when deadline misses occur.
We have demonstrated the scalability and performance of our
framework using synthetic test cases and a real-world test bed.
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