a9y United States

US 20160246646A1

a2 Patent Application Publication (o) Pub. No.: US 2016/0246646 A1

CRACIUNAS et al. (43) Pub. Date: Aug. 25, 2016
(54) METHOD FOR EXECUTING TASKS IN A (30) Foreign Application Priority Data
COMPUTER NETWORK
Oct. 11,2013 (AT) oo A 788/2013

(7

(72)

(73)

2D
(22)

(86)

Applicant: FTS COMPUTERTECHNIK GMBH,

Inventors:

Assignee: FTS COMPUTERECHNIK GMBH,

Wien (AT)

Wien (AT)

Appl.No: 15/027,126

PCT Filed: Sep. 15,2014

PCT No.: PCT/AT2014/050205
§371 (e)(D),
(2) Date: Apr. 4,2016
TT-Task Set
v
(piy| Task Transformation

«/ g
/7

Silviu CRACIUNAS, Wien (AT);
Ramon SERNA OLIVER, Wien (AT)

(pg}g Schedulability Test

4

|v]
||
(¥l
@]
po
[503
(o8
==
a2
&
1
:aﬂ
(%)
=
v
3]
-t
w

/'Dependence ‘

Constraints

Publication Classification

(51) Int.CL
GOGF 9/48 (2006.01)
(52) US.CL
CPC oo GOGF 9/4881 (2013.01)
(57) ABSTRACT

Method for executing tasks in a computer network, wherein
said computer network comprises nodes and optionally at
least one starcoupler, wherein said nodes are connected to
each other, directly, for example via a bus or a bus system,
and/or by said at least one starcoupler and/or by at least one
multi-hop network, and wherein in said computer network
nodes exchange time-triggered messages.

Precedence
= 4 (03}
Test
’ 4

T

Comphant Task Sets ' ij(sz)

M,\ € Task Utii;ty i

Optimality Criteria (4)

v

Opt;mal Task Set

tr
(98]

Patent Application Publication

Aug. 25,2016 Sheet 1 of 6

US 2016/0246646 Al

TT-Task Set

H{p3!

v

(p1y! Task Transformation

v

(;92)% Schedulability Test

/Dependence ;»
4 S— —

/" Constraints /

Non-synchronized clocks

Optimality Criteria

v

Opt;maf Task Se_—J {23)

Fig. 1

(pd)

RTS time

RTS scheduie
TTE time TTEthernet schedule

Synchrenized clocks

]

RTS schedule)

TTEthernet schedule

Fig. 2

Patent Application Publication Aug. 25,2016 Sheet 2 of 6 US 2016/0246646 Al

TIVLID TEVLID

TTVLD, TTVUD,

: v
> YTrvup,,

Fig. 3

= TUR
_______ TUFL‘N
e TURD

-
-

e,

p—— RN
" T g Schedule

Patent Application Publication Aug. 25,2016 Sheet 3 of 6 US 2016/0246646 Al

TT 12

TT RIST

TT Tl

TT UUSFR

TT <AFF

7T TX

TI-Tasks

Fig. 4

TT RY

TT-RTS3 Task Schedule

TT Py

TT ¥ P2

TT e

TT FATH

Task Sthedule
MSG GWUT
Bt Fifnrt

Patent Application Publication Aug. 25,2016 Sheet 4 of 6 US 2016/0246646 Al

[non-optamized TT-RTS -t
optinuized TT-RTS —&- -

utilization | %]

sy

S0 250 100

‘ : T e ‘ s
10 25 MG 10 250 1000

macrotick [ls]

L7

Fig. 6

US 2016/0246646 Al
ENN N

I

1 syne mierva

B e

i

y
.\H

2

PR e

Aug. 25,2016 Sheet S of 6

-

Z

00 -

300

Patent Application Publication
2

{ ¥ o RS

5
104 A

fvas

800
00

b

oA
e
o6

430
484

2 syne intery

)

&0
160

i

ol
deli time [ns]
Fig. 7

-160
I

80
80

4
4

SO0

<
=

)

A0

) -
158 4
100 4
50 -

250

2
-~

Patent Application Publication

Aug. 25,2016 Sheet 6 of 6

US 2016/0246646 Al

TEMAIN

1W0us § 10ms | Main safety application F -
TP Aldes s | Cowmtrod task 1 C&F | BCUCR
TT=CP2 Slus lms | Control task 2 C&P | ACCA
TEED 300us | 1hms | Periodic disgnostics F -
TT-RX 1000185 s | Message meception C ACH
THTX T s Wrres | Message transmission P CAD
TISAFE | 3000ps | 1ms | Safery management F
TE-USER 50ps ¢ 10ms | User-defined F -
11101 2000us | 10ms | IO handling (1) F -
TI-12 S00ps § 10ms | O handling (2) F -
TI-BIST B0us § 10ms | Buit-in self-tests F -

Fig. 9

US 2016/0246646 Al

METHOD FOR EXECUTING TASKS IN A
COMPUTER NETWORK

[0001] Theinvention relates toa method for executing tasks
in a computer network, wherein said computer network com-
prises nodes and optionally at least one starcoupler, wherein
said nodes are connected to each other, directly, for example
via a bus or a bus system, and/or by said at least one starcou-
pler and/or by at least one multi-hop network, and wherein in
said computer network nodes exchange time-triggered mes-
sages.

[0002] Furthermore, the invention relates to a computer
network comprising nodes and optionally at least one
starcoupler, wherein said nodes are connected to each other,
directly, for example via a bus or a bus system, and/or by said
at least one starcoupler and/or by at least one multi-hop net-
work, and wherein in said computer network nodes exchange
time-triggered messages.

[0003] In yet another aspect the invention relates to a
method for calculating task parameters and/or task schedules
in a computer network, wherein said computer network com-
prises nodes and optionally at least one starcoupler. wherein
said nodes are connected to each other, directly, for example
via a bus or a bus system, and/or by said at least one starcou-
pler and/or by at least one multi-hop network, and wherein in
said computer network nodes exchange time-triggered mes-
sages.

[0004] The (above stated) method for executing tasks in a
computer network according to the invention is characterized
in that said tasks are executed on nodes and/or on the at least
one starcoupler according to a static task schedule, wherein
said task schedule is computed by the following steps:
[0005] a)transforming a defined task set to a periodic asyn-
chronous task model (p1), yielding a first quantity of task sets;
[0006] b)applying a feasibility test (p2) to the first quantity
oftask sets obtained in step a) for reducing the number of task
sets to a second quantity of task sets (s1), a so-called schedu-
lable task sets (s1), also referred to as feasible task sets;
[0007] c) applying a precedence test (p3) to the second
quantity of task sets obtained in step b), producing a subset of
task sets of the second quantity of task sets, said subset of task
sets comprising the so-called compliant task sets (s2);
[0008] d) applying a criteria (p4) over the set of compliant
task sets (s2), resulting in one task set, a so-called “final” task
set (s3) (the one from which the schedule will be generated)
[0009] The criteria in step d) can be any criteria (in particu-
lar non optimal or optimal). For example, a random pick. It is
important that the criteria (p4) allows to reduce the quantity of
compliant task sets (s2) to one single task set (s3).

[0010] As step d) produces one (final/optimal) task set, this
allows a dynamic scheduling algorithm simulator (p5) to
produce a static schedule, based on the final/optimal task set
(83), called final/optimal schedule. Applying the dynamic
scheduling algorithm to all compliant task sets (s2) and
selecting one of the resulting schedules would be very inef-
ficient in the number of operations.

[0011] The (above stated) computer network according to
the invention is characterized in that said tasks are executed
on nodes and/or on at least one starcoupler according to a
static task schedule, wherein said task schedule is computed
by the following steps:

[0012] a)transforming a defined task set to a periodic asyn-
chronous task model (p1), preferably an EDF task model
(p1). yielding a first quantity of task sets;

Aug. 25,2016

[0013] b)applying a feasibility test (p2) to the first quantity
of task sets obtained in step a) for reducing the number of task
sets to a second quantity of task sets (s1), a so-called schedu-
lable task sets (s1), also referred to as feasible task sets;
[0014] c) applying a precedence test (p3) to the second
quantity of task sets obtained in step b), producing a subset of
task sets of the second quantity oftask sets, said subset oftask
sets comprising the so-called compliant task sets (s2);
[0015] d)applying a criteria (p4) over the set of compliant
task sets (s2), resulting in one task set, a so-called “final” task
set (s3) (the one from which the schedule will be generated)
[0016] Thecriteria in step d) can be any criteria (in particu-
lar non optimal or optimal). For example, a random pick. It is
important that the criteria (p4) allows to reduce the quantity of
compliant task sets (s2) to one single task set (s3).

[0017] The (above stated) method for calculating task
parameters in a computer network according to the invention
is characterized in that

[0018] a)transforming a defined task set to a periodic asyn-
chronous task model (pl), preferably an EDF task model
(p1), yielding a first quantity of task sets;

[0019] b)applying a feasibility test (p2) to the first quantity
of task sets obtained in step a) for reducing the number of task
sets to a second quantity of task sets (s1), a so-called schedu-
lable task sets (s1), also referred to as feasible task sets;
[0020] c) applying a precedence test (p3) to the second
quantity of task sets obtained in step b), producing a subset of
task sets of the second quantity of task sets, said subset of task
sets comprising the so-called compliant task sets (s2);
[0021] d)applying a criteria (p4) over the set of compliant
task sets (s2), resulting in one task set, a so-called “final” task
set (s3) (the one from which the schedule will be generated).
[0022] For the sake of easier reading, explanations of fea-
tures with regard to the disclosure of this document, in par-
ticular features of method claims (method for executing tasks,
method for calculating task parameters) are also true for the
corresponding features of the device claims and vice versa, if
not stated otherwise.

[0023] Preferred embodiments and/or aspects of the inven-
tion are described in the dependent claims as follows, which
can be combined freely if not stated otherwise.

[0024] Preferably, the method for executing and/or calcu-
lating task parameters according to the invention and/or the
computer network according to the invention can be addition-
ally characterized in that a dynamic scheduling algorithm
simulator (p5), preferably an EDF simulator, more preferably
an offline EDF simulator, generates, based on the final task set
(s3), a schedule, the so called final schedule.

[0025] Preferably, the method for executing tasks and/or
calculating task parameters (and/or schedules) according to
the invention and/or the computer network according to the
invention can be additionally characterized in that in step d)
an optimal criteria (pd) is applied over the set of compliant
task sets (s2), resulting in one task set, a so called optimal task
set (s3). The “optimal criteria” is also referred to as “optimal-
ity criteria” within this description. In this case, the optimal
task set represents the final task set according to the invention
and the final schedule represents the optimal schedule accord-
ing to the invention.

[0026] Preferably, the method for executing tasks and/or
calculating task parameters (and/or schedules) according to
the invention and/or the computer network according to the
invention can be additionally characterized in that the task
schedule is computed offline.

US 2016/0246646 Al

[0027] Preferably, the method for executing tasks and/or
calculating task parameters (and/or schedules) according to
the invention and/or the computer network according to the
invention can be additionally characterized in that dependen-
cies with TT-messages for those tasks involved in the produc-
tion or consumption of payload data are considered during the
specification of task parameters. The specification of task
parameters refers to at least four parameters for each task
(period, computation time, offset and deadline). Period and
computation time are given based on the TT-task set. Offset
and deadline are calculated during the transformation step
(p1) based on the dependencies to the TT-messages.

[0028] Preferably, the method for executing and/or calcu-
lating task parameters (and/or schedules) according to the
invention and/or the computer network according to the
invention can be additionally characterized in that the static
schedule is calculated by taking into account the dependen-
cies of tasks to a network schedule of the computer network.
[0029] Preferably, the method for executing and/or calcu-
lating task parameters (and/or schedules) according to the
invention and/or the computer network according to the
invention can be additionally characterized in that the static
schedule is calculated by taking into account interdependen-
cies of different tasks. This allows that the task transformation
(p1) produces all possible task sets (based on the network
dependencies and the TT-task set), step p2 eliminates the
unfeasible ones (i.e. non-schedulable) and step p3 eliminates
from the feasible task sets (s1) those that do not comply with
interdependencies of different tasks (producing s2). Interde-
pendencies refer to execution order constraints imposing pre-
cedencies in the execution of one task before another.
[0030] Preferably, the method for executing and/or calcu-
lating task parameters (and/or schedules) according to the
invention and/or the computer network according to the
invention can be additionally characterized in that each cal-
culated task parameter from each task set of the compliant
task sets (s2) is assigned a function, preferably a time utility
function (TUF), evaluating the optimality of each possible
parameter value. Each task set of the compliant task sets (s2)
can be assigned a utility function, preferably a Time Utility
Function (TUF) evaluating the optimality of each possible
parameter value.

BRIEF DESCRIPTION OF THE DRAWINGS

[0031] The specific features and advantages of the present
invention will be better understood through the following
description. In the following, the present invention is
described in more detail, in particular with reference to exem-
plary embodiments (which are not to be construed as limita-
tive) depicted in drawings:

[0032] FIG. 1 shows a task set transformation and sched-
uling process,

[0033] FIG. 2 shows a time-interdependence of tasks
executing in a runtime system (TT-RTS) and network sched-
ules,

[0034] FIG. 3 shows a test-bed setup with a TTEthernet
switch and 3 end-system nodes,

[0035] FIG. 4 shows an output window displaying the gen-
erated TT-RTS schedule and dependent TT-messages,
[0036] FIG. 5 shows deadline TUFs for consumer task TT,
consuming TT-message m, vs rigidity,

[0037] FIG. 6 shows the TT-RTS overhead as percentage of
the total run-time in function of the macrotic length on the
TMS570 platform,

Aug. 25,2016

[0038] FIG. 7 shows the difference between TT-RTS and
network cycle time [ns],

[0039] FIG. 8 shows oscilloscope measurement of maxi-
mum jitter between any two end-system nodes in Test-Bed
(FIG. 3) and

[0040] FIG. 9 shows task set for end-system node TTE-C.

DETAILED DESCRIPTION OF THE INVENTION

1. Introduction

[0041] Optimal static scheduling of real-time tasks on dis-
tributed time-triggered networked systems: Mixed-criticality
and high availability distributed systems, like those on large
industrial deployments, strongly rely on deterministic com-
munication in order to guarantee the real-time behavior. The
time-triggered paradigm—as in TTEthernet—guarantees the
deterministic delivery of messages with fixed latency and
limited jitter. We look closely at industrial deployments in
which production as well as consumption of messages is
carried out within software tasks running on distributed
embedded nodes (i.e. end-systems). We present an approach
to minimize the end-to-end latency of such tasks, respecting
their precedence constraints as well as the scheduled commu-
nication in an underlying switched TTEthernet network. The
approach is based on and validated by a large industrial use-
case for which we analyze a test bed implementing our solu-
tion.

[0042] Industrial applications are becoming increasingly
distributed among numerous sub-systems with mixed criti-
cality requirements. Ensuring deterministic communication
between often co-existing applications is essential to guaran-
tee safe and high-available deployments demanding tight
latency, minimum jitter, and bandwidth guarantees. Time-
Triggered Ethernet (TTEthernet [1], SAE AS6802 [2]) incor-
porates a time-triggered paradigm to the IEEE 802.3 standard
enabling deterministic time-critical communication over
standard Ethernet. TTEthernet enables the timely transmis-
sion of periodic messages (TT-messages) at predefined
instants of time. This is achieved by means of a global com-
munication schedule where time windows for each transmis-
sion are planned ahead on a hop-by-hop basis.

[0043] Despite the deterministic end-to-end guarantees of
TTEthernet, scheduled messages often carry software-com-
puted pay-load which is to be generated—or respectively
consumed—within the end-system software as close as pos-
sible to the message transmission—respectively reception—
instant. Failing to do so introduces latency at the software
layers and potentially adds jitter between the communicating
applications hindering the strong determinism of TTEthernet.
Extending the network end-to-end guarantees towards the
application layers reduces to scheduling the tasks responsible
for the production and consumption of payloads right at the
instants when the data is to be transmitted or received, respec-
tively.

[0044] Inthis paper we consider optimality with respect to
minimizing the effective end-to-end latencies of communi-
cating end-to-end tasks. To this extend, we present a gener-
alized method constructing optimal static task schedules for
the applications running on the end-systems of a multi-hop
switched network for which a TTEthernet schedule already
exists. Our experience with industrial applications shows that
the network schedule is often built and optimized with custom
constraints during deployment—generally on-site by the cus-
tomer—and shall not be modified due to certification pro-

US 2016/0246646 Al

cesses. Hence, we aim at integrating the end-to-end software
services and applications without affecting the overall net-
work schedule.

[0045] We show that inter-task as well as network depen-
dencies can be expressed in the form of a constrained opti-
mization problem aiming at minimizing the overall end-to-
end latency. Moreover, we show how to generate static
schedules using mechanisms from dynamic priority schedul-
ing derived from classical scheduling theory. Our approach is
centered on task set transformations to a dynamic task model
for which there exist necessary and sufficient feasibility tests
that can be incorporated in the optimization criteria. Rather
than searching for a final optimal schedule among all pos-
sible, we define the optimization problem to find feasible task
sets for which the offline execution of the dynamic algorithm
constructs an optimal schedule table.

[0046] Section II details the overall process highlighting
the main contributions of this paper. In Section III we intro-
duce the network and task models along with the real-time
run-time system implementing our software-platform. We
then discuss the task set transformation and detail the optimi-
zation problem generating static schedules (Section [V). Sec-
tion V presents the application of this approach into a real-
world industrial test-bed and summarizes the main results.
Finally, Section VI overviews related work and Section VII
concludes the paper.

II. General Process

[0047] We illustrate the general process building our
approach in FIG. 1. The depicted workflow specifies the steps
for the generation of an optimal task schedule beginning with
the user-defined task set (section I11-C) for a given end-sys-
tem.

[0048] The task set is first transformed to a periodic asyn-
chronous task model (pl), preferably an EDF (“Earliest
Deadline first”) task model (p1), wherein an EDF is applied to
a periodic asynchronous task model.

[0049] following the steps in Section IV-A. The dependen-
cies with TT-messages for those tasks involved in the produc-
tion or consumption of payload data are considered during the
specification of task parameters. The transformation yields a
large number of task sets due to the combinations of possible
values for the new task model, out of which we aim at obtain-
ing the optimal task schedule. However, thanks to the EDF
basis we can apply a feasibility test (p2) reducing the search
space to those task sets which are feasible under EDF (s1).
Note that, as a property of EDF, if a task set does not satisfy its
feasibility test no other algorithm would produce a valid
schedule. To further reduce the amount of task sets, we apply
a precedence test (p3) (Section IV-C) based on the task pre-
cedence constraints specified by the user. This produces a
subset of compliant task sets (s2) with parameters satisfying
the inter-task dependencies.

[0050] Next, we apply the optimality criteria (p4) formu-
lated as an optimization problem over the set of compliant
task sets, for which each task is assigned a time utility func-
tion (TUF) specifying its tolerance towards latency (Section
IV-D). As a result, a so-called “final” task set (s3), in particu-
lar the feasible task set with the greatest TUF accrual (optimal
task set) is found (s3). This task set—if'exists—is then sent to
an offline EDF simulator (p5) which generates the optimal
schedule based on the EDF algorithm (Section IV-E). The

Aug. 25,2016

output is then processed into a static schedule table that can be
used at run-time by our time-triggered run-time system (Sec-
tion 1II-B).

[0051] This process differs from directly deriving the opti-
mal schedule by means of an optimization search of the
complete domain space. Instead, we significantly reduce the
work for the optimizer to determining the set of parameters
for a feasible EDF task set accounting for the maximum TUF
accrual. We then allow an offline EDF scheduler to decide the
final placement of task, including their preemptions (i.e. the
offline schedule). Moreover, the search space for the optimi-
zation problem is further reduced following (p2) and (p3).

1II. System Model

[0052] A. Network Model

[0053] A key concept of TTEthernet [3] is the time-trig-
gered paradigm enabling real-time and non-real time com-
munication over standard IEEE 802.3 Ethernet. Time-trig-
gered messages (TT-messages) are scheduled periodically at
each network device (i.e. switches and end-systems) and
transmitted within predefined periodic transmission-win-
dows. Analogously, the reception of TT-messages is only
accepted within their reception-windows, which guarantees
conflict-free and minimum jitter communication. Best-effort
messages (BE-messages) are transmitted as regular Ethernet
messages in the time intervals where communication chan-
nels are idle and thus do not interfere with scheduled critical
traffic. To achieve this, TTEthernet specifies a network-wide
fault-tolerant clock synchronization algorithm [4] that guar-
antees the time synchronization of each participating node.
[0054] B. Run-Time System

[0055] Real-Time Operating Systems (RTOS) provide the
basis for the deterministic execution of tasks with real-time
requirements. Typical task constraints include periodic
execution and deadlines. Additional constraints appear when
distributed applications communicate over deterministic net-
work architectures like TTEthernet. In this particular case,
constraints are also related to the network schedule of incom-
ing and outgoing messages. In such scenarios, the end-to-end
latency is composed by the inherent delay due to communi-
cation as well as that introduced in the execution of tasks.
Minimal end-to-end latency is only ensured if the tasks in the
end-systems are scheduled with a tight dependency to the
incoming or outgoing messages consumed or, respectively,
produced.

[0056] TT-RTS is an embedded real-time run-time system
designed and implemented by TTTech currently undergoing
certification (SIL-2) and deployment activities in the scope of
multiple cross-industry projects. Within TT-RTS we differen-
tiate two classes of tasks, TT-tasks (time-triggered tasks) and
BE-tasks (best-effort tasks). This matches the main message
types found in TTEthernet. We consider a discrete time-line
based on macroticks, which is the granularity at which the
TT-RTS operates. Moreover, we define the schedule based on
time slots, where a time slot consists of one or more contigu-
ous macroticks. TT-tasks have a fixed activation time and a
dead-line, and are scheduled offline with fixed guaranteed
time slots. Within their time slots they cannot be preempted
by any other task. However, a T'T-task may be scheduled on
several discontinuous slots if required (i.e allowing preemp-
tion). BE-tasks are preemptive tasks with a fixed time budget.
They are treated as background tasks [5, p. 110] without a
fixed activation time or deadline, i.e., they run whenever
TT-tasks are not executed. Since TT-RTS guarantees tempo-

US 2016/0246646 Al

ral isolation between TT- and BE-tasks, we will disregard
BE-tasks in the discussion from now on and concentrate on
TT-task scheduling.

[0057] The schedule for a task set in TT-RTS is specified
through a static offline-computed schedule table consisting of
a set of time slots, which are either assigned a TT-Task or
marked for the execution of BE-Tasks. Since such tables are
potentially infinite we incorporate the concept of schedule
cycle, which represents the shortest time interval after which
the sequence of time slots repeats (i.e. hyperperiod).

[0058] C. Task Model

[0059] A TT-task TTi is defined by a tuple (C,”%, T,”"),
where C,”” is the worst-case computation time (WCET) and
T, is the period. In FIG. 2 we show the dependency of
TT-tasks with respect to the timing of scheduled TT-mes-
sages. Note that the TT-RTS and the network operate on
different time-domains. In the upper part of the figure, a
scheduled incoming TT-message min needs to be consumed
by task TTc while task TTp must produce the payload for an
outgoing TT-message by its scheduled window—shown as
mout. However, the task and network schedules run in non-
synchronized time-domains, which causes TT¢ to start execu-
tion before min has arrived, and TTp to produce the message
after it is expected for transmission. In both cases, the effec-
tive consumption and production of the messages may only
happen in the following task activation, hence increasing the
effective end-to-end latency by one task period. The lower
part of the figure depicts the same scenario under synchro-
nized time domains and a task schedule enforcing minimum
latency with respect to the TT-messages. In this case, both
messages are consumed and respectively produced by the
expected time. Note that, we consider a model in which the
TT-tasks have the same periods as the TT-messages they
depend on.

[0060] We observe the following fundamental classifica-
tion of TT-tasks with respect to their network dependencies:

[0061] Producer TT-tasks generate TT-messages that
must be available by the instant the associated transmis-
sion-window in the network schedule starts. We define
the producer latency as the time between the TT-task
completion and the beginning of the reserved network.

[0062] Consumer TT-tasks must consume an incoming
TT-message and therefore only start after the associated
reception-window. We define the consumer latency as
the time from the end of the time-window until the
completion of the respective task.

[0063] Consumer then Producer TT-tasks have depen-
dencies upon two TT-message time-windows and are a
combination of the aforementioned types. This class
usually maps to tasks running control loops which con-
sume sensor measurements and produce actuator values.

[0064] Free TT-tasks are independent of the TTE-net-
work.

[0065] Note that we do not consider the case of producer
then consumer as it introduces a fundamental contradiction,
i.e., in order to produce the payload for the first message with
minimum latency, the task must execute before the transmis-
sion of the first message is due. However, the consumption of
the second message with minimal latency requires the task to
execute after the reception of the later arriving message.
Therefore, the order of the messages conflict with respect to
the chances of obtaining minimum latency for the task. To
solve this, we propose that in these scenarios, the system
designer shall decide between either options and effectively

Aug. 25,2016

define the task as producer or consumer. Thus, the problem is
reduced to minimizing the latency for either the consumption
or the production of one single message, but not both.

IV. Offline Scheduling

[0066] Inthis section westart from a generic model without
explicit constraints on tasks and define a general task set
transformation (Section IV-A) allowing us to construct an
optimization approach which generates feasible task sets
under EDF (Section IV-B). We then extend the optimization
problem to include task interdependence (Section IV-C) and
show how dependencies to the network schedule can be
solved in a flexible manner in Section IV-D.

[0067] A. Task Set Transformation

[0068] We first refer to the periodic task model from [6].
Consider a set of n periodic tasks, I={till=i=n}. A task ©i is
defined by the tuple (¢,, C,, T,, D,) with C, denoting the
computation time, T, the period, ¢, the offset, and D, (for the
sake of completeness it is herewith clarified that Di=D,, Ti=T,
and so forth, thus variables having identical appearance
unless the formatting of the subscripted index are identical if
not stated otherwise) the relative deadline of the task. The
total utilization of I" is U=X,_,"U,, where

is the utilization of task Ti.

[0069] We want to transform a task TTi defined through the
tuple (C,”7, T /%), into a task ti defined by the tuple (¢, C,, T,,
D,). The idea behind this transformation is developed in Sec-
tion IV-D, for now, we formulate it as follows. The computa-
tion times and periods of TT-tasks can be readily transformed,
namely, Ci=Ci*” and Ti=Ti*”. Furthermore, we have to assign
values for the offsets and deadlines of tasks, where these
parameters depend on the specific task properties and require-
ments. For example, if the TT-task set is independent of
network constraints, the offset for each task would be 0 and
the deadline would be set equal to its period.

[0070] Inits most generic formulation, the offset and dead-
line of a task can take any value that may result in a valid
schedule, i.e., ¢; (J[0, T,-C,] and D, OJ[C,, T,]. In order to
choose the optimal combination of task offsets and deadlines
we introduce the term of task utility that expresses specific
task constraints and requirements. We model the task utility
using the concept of time utility functions (TUF) [7].

[0071] We define two TUF functions, one for the offset and
one for the deadline of a task. A TUF for the offset of a task ti
is a function defined over the domain [0, Ti-Ci], while the
TUF for the deadline is defined over the domain [C1,T1]. The
TUFs take values in the normalized co-domain [0, 1]. A value
of 1 represents maximum utility, whereas 0 denotes an invalid
value for the respective parameter, i.e., the resulting schedule
is regarded as invalid. Note that TUF functions may constrain
the output of the task-set transformation to a sub-domain of
the input domain, hence potentially discarding feasible
schedules if, e.g. the TUFs for one or more tasks take 0 for any
point within their defined domain. In such cases, we claim
that the optimality of the transformation still holds, since the
TUF introduces additional constraints to the validity of a
transformed task set. Note also that TUFs with values greater
than 0 do not introduce such constraints. In Section IV-D we

US 2016/0246646 Al

elaborate on the mapping of TUF's to specific task constraints
and requirements. For now, we regard any function as valid.
[0072] B. Optimization Problem

[0073] We formulate the problem of finding a feasible task-
set (i.e. combination of task offsets and deadlines) that result
in the largest possible accrued value of TUFs.

[0074] The first set of constraints on the offsets and dead-
lines come from the feasibility test of EDF [6]. EDF is a
dynamic scheduling algorithm which prioritizes task
mstances based on their absolute deadlines, i.e., at each time
mstant, the task with the most immediate absolute deadline is
scheduled. For task sets scheduled with EDF, a necessary and
sufficient schedulability condition has been given in [6],
namely, the task set I" is schedulable such that no absolute
deadline is missed if U<1. The schedulability test, however, is
based on deadlines being equal to periods and offsets being 0.
For our purposes, we have to look at a task model in which the
arrival times have an offset ¢ >0 and a deadline Di<Ti [5,p.
79]. We therefore apply the necessary and sufficient feasibil-
ity test for asynchronous tasks with deadlines less than or
equal to periods from [8], [9]. In essence, we define the
optimization problem to explore each combination of task
parameters, skipping those that result in non-feasible task
sets.

[0075] The second set of constraints comes through the
previously defined property of TUFs where a value of 0
results in an invalid parameter. Thus, we define the maximi-
zation function as the sum of TUFs of all tasks, and the
constraints as the aforementioned schedulability conditions
for asynchronous tasks with deadlines less than or equal to
periods with additional user constraints on non-valid task
sets.

[0076] Eachtasktiel isdefined, aspresented earlier, by the
tuple (¢;, C,, D,, T,). We denote the time utility functions of a
task T, with TUF,*: [0, T,~C,]—[0, 1], and TUF/”: [C,, T,]—
[0, 1], for offset and deadline, respectively. We use the defi-
nitions from [9], namely, H=1 cm{T,, ..., T }, ®=max{¢,,
.. .»{,,} and define E=®+2-H. For each generated task set, the
schedulability condition is checked using the necessary and
sufficient feasibility test for asynchronous tasks from [8], [9].
We thus define the optimization problem as:

max TUFy)" (TUFf(¢) + TUFP (D),
@i p=)

Subject to:

<y

Z T—k =1

=1k

7k e [1,)TUF (¢) > DATUFP(Dy) > 0
Vel Vel

1< ;Z:‘ Ck([%%[h;—k%]ﬂ)o =n-1

where
Adéf{a,-,j=tp,-+jT‘-|i=1,... Jnijz0a ;< E},

A = 4D =1 e jz0d < E)

For each possible solution of a given task set these conditions
are derived from the task parameters themselves. The sets A

Aug. 25,2016

and A contain the arrivals and absolute deadlines, respec-
tively, of all jobs until the time instant E. These two sets create
intervals that, according to [8], [9], need to fulfill the condi-
tion that the processor demand is less than the processor
capacity, i.e., the amount of work done by the jobs in an
interval is less than or equal to the length of the interval.
[0077] C. Task Interdependencies

[0078] Inreal applications task dependencies are found not
only with respect to network messages but also with respect to
other tasks. Task interdependencies are usually expressed as
precedence constraints [10], e.g., task i must execute and
finish before task tj starts. Note that we consider only simple
precedences, as they are called in [11], namely precedence
constraints only between purely periodic TT tasks that have
the same “rate”. Multi-rate communication among tasks (ex-
tended precedences [11]) is left for future work.

[0079] In EDF, the precedence constraints between two
tasks are guaranteed if the release times and deadlines are set
accordingly, i.e., if task i has to run before task 7j, then the
release time and deadline of task tj have to be after the release
time and deadline of task Ti, respectively. It can be easily
proven (cf. [5. p. 71]) that if the original task set is modified to
include precedence constraints in the form of altering release
times and deadlines then the algorithm is still optimal. For the
particular case of two or several tasks having the same dead-
line at a given time instant of time, EDF does not define an
explicit criteria to choose among them. Nevertheless, the
algorithm can be extended to include priorities for tie-break-
ers between tasks without altering the scheduling optimality
[6]. Therefore, we adopt the following criteria to define task
priorities: If task ti with priority Pi and tj with priority Pj with
Pi>Pj have the same deadline at time t, task ti will be executed
first.

[0080] We model task interdependence as additional con-
straints in the optimization problem formulation from Section
IV-A, which guarantee that applying the EDF scheduling
algorithm will result in a static schedule that satisfies these
dependencies. Iftask i has to run before task 7j the additional
constraint can be formulated as ¢,2¢,, D,<D,, P>P,.

[0081] The schedulability proof is trivial (see for example
the proof for the simple case in [5, p. 71]) since all modified
parameters are either greater or equal (in case of offsets) or
smaller or equal (in the case of deadlines) than their original
counterparts. From [5, p. 71] we know that if the modified
task set is schedulable, then also the original one is schedu-
lable and the tasks respect their initial deadlines, but, in addi-
tion, they also adhere to the precedence relations.

[0082] D. Network Schedule Dependencies

[0083] In Section III-C we identified four types of tasks,
namely producer, consumer, consumer then producer, and
free TT-tasks in terms of their network dependencies. Our
goal is to minimize the producer and consumer latencies by
finding values for task offsets and deadlines accounting for
the network dependencies. Free tasks can be scheduled any-
where since they do not have dependencies to the network
schedule while the other type of tasks need to be scheduled
such that the latency between the consumption or production
and the moment of sending or receiving of the TT-message is
minimized.

[0084] We start from a restrictive transformation with mini-
mal producer and consumer latencies by adapting the task
model transformation described in Section III-C as follows:
[0085] 1. Set deadlines and computation times, Ci=Ci’”,
Ti=Ti"".

US 2016/0246646 Al

[0086] 2. The type of TT-Task determines which param-
eters are constrained by the network schedule: For producer
TT-tasks the computation must be completed before the
dependent TT-message transmission is due. Therefore, its
deadline is fixed at the beginning of the transmission-window.
Analogously, for consumer TT-tasks, the arrival time is fixed
at the end of the reception-window. For consumer then pro-
ducer T'T-tasks both arrival and deadlines are fixed by the end
of the reception-window of the consumed TT-message and
respectively at the beginning of the transmission-window of
the produced TT-message. For free tasks, the offset is equal to
0 and the deadline is set to be equal to its period.

[0087] 3. To complete the transformation with minimal
producer and consumer latencies we fix the remaining param-
eters as follows. The offset of a producer TT-task TT, is
$,~D,-C, and the deadline of a consumer TT-task TT, is set to
D=9 +C.

[0088] With this transformation we obtain a single solution
that is also optimal if the task set is feasible through EDF.
Hence, the optimization problem is reduced to a simple
schedulability check. This method guarantees minimal pro-
ducer and consumer latencies at the expense of introducing
strict task constraints. That is, with exception of the free task
all other TT-tasks are in effect non-preemptable (i.e. the time
left between their release and deadline equals their computa-
tion time).

[0089] Ifwe allow for less restrictive input domains, we can
map the rigidity of a task in terms of increasing its latency to
TUF functions, i.e., we may find a feasible schedule by
increasing the schedulability time-window (i.e. the time inter-
val in which a task may be scheduled) for selected tasks. For
example, for a consumer task the requirement might be that it
only has to run after the message is received but there is a
certain flexibility with respect to delaying its execution (e.g.
the utility decreases linearly as the latency increases). In order
to define the input domains matching the task dependencies to
the network schedule, we introduce additional constraints for
offsets and deadlines in the optimization problem. Note that,
restricting the input domain ofa TUF function is equivalent to
adding constraints on the specific variable for the optimiza-
tion problem and vice-versa.

[0090] We define the critical time instant t? for a producer
task T, as the transmission time of the associated TT-message.
Analogously. t,° denotes the end of the reception-window for
the TT-message associated with a consumer task T, For a
producer TT-task T, the deadline of the task can be no later
than its critical instant, hence, we add a constraint for the
optimization problem that guarantees that the task will not
exceed its critical instant, namely C,<D,<t#. For the offset we
also introduce an additional constraint, namely 0=¢,<D,~C,.
This is equivalent to restricting the input domain of the task
deadline TUF is reduced to [C,, t/] and the offset TUF domain
10 [0, t7-C,]. If the task has no dependencies to other tasks,
the input domain for the deadline TUF can be further
restricted to just {t7}, thus allowing maximum flexibility for
EDF by extending the task’s schedulability region to its maxi-
mum. Clearly, in this case, having a deadline that is smaller
than the critical instant would not result in a better schedule.

[0091] Analogously, for a consumer TT-task 7, an addi-
tional constraint on the offsetis t,"<¢,<T,~C, and ¢,+C,<D,<T,
on the deadline. This is equivalent to restricting the input
domain of the offset TUF to ¢, [[t,%, T,~C,] while the deadline
TUF domain becomes [t,"+C,, T,]. Similar to producer tasks,

Aug. 25,2016

if there are no other dependencies we can reduce the input
domain of the offset TUF to {t°}.

[0092] For consumer then producer TT-Tasks we consider
three possible cases, although we acknowledge that other
cases may exist depending on the system particularities.

[0093] i) The task must consume the TT-message with
minimum latency (e.g. command: switch to safe-mode)
and then produce a non-critical acknowledgment.

[0094] ii) The task receives a command to process data
and transmit it with minimum latency (e.g. most recent
sensor value).

[0095] iii) Both consumption and production of the TT-
messages require minimum latency (e.g. data acquisi-
tion and feedback for a control loop).

[0096] We decide the input domains for the TUF of each
case as follows: in case 1) the task is treated as a consumer
since the production is not critical. Inversely, i1) is treated as
a producer, given that the consumption is not critical. Case
iii), on the other hand, has conflicting requirements that can-
not be completely satisfied. Therefore, we define the input
domains as [t5, 17-C,] and [(,+C,, t7], respectively.

[0097] A free TT-task implies no additional constraints on
the optimization problem. Therefore, a free task that is also
independent of other tasks can have a fixed offset of 0 and a
deadline equal to Ti. It is still possible, however, to define
through the input domains and TUFs that a free task has other
types of dependencies (e.g. a specific offset in the schedule
cycle) and therefore the input domains (or additional optimi-
zation constraints) can be chosen accordingly.

[0098] If we consider network dependencies as well as
inter-task dependencies, we need to add both the additional
constraints presented in section IV-C and the aforementioned
constraints on network dependent tasks. Through this we
obtain input domains for the TUFs of tasks that will only
allow values for offsets and deadlines resulting in compliant
task sets that respect both inter-task and network dependen-
cies.

[0099] As can be seen, the TUF input domains are reduced
(insome cases even to single points), which decreases the size
of the solution space. The choice of TUFs depends on the
individual TT-task requirements. A system designer can thus
specify for example that the utility of a certain task decreases
when its latency increases or has maximum utility only in a
sub-domain of the input domain. We expect the TUFs to be
monotonic although they need not be. Hence, the TUF allows
each task to have a very flexible definition of latency require-
ments and can map to any scenario found in industry. We
intentionally leave aside the discussion regarding TUFs for
particular systems for now, arguing that our approach is inde-
pendent of this aspect. In Section V-A we will give examples
of input domains and TUFs for tasks running in a real-world
industrial application.

[0100] E. Schedule Generation

[0101] If a task set is found by solving the optimization
problem, the static schedule is generated by running an offline
simulation of the EDF algorithm on that task set. The prop-
erties of EDF [5, p. 57] allow us to claim that the generated
schedule is optimal with respect to minimizing maximum
latency. On the other hand, if no schedule is found using EDF
then no other algorithm can find a feasible schedule. The TUF
paradigm quantifies the utility of each task, hence, the result-
ing static schedule is optimal with respect to the accrued
utility of all tasks. Moreover, the resulting schedule is guar-
anteed to also respect the network dependencies as well as

US 2016/0246646 Al

task inter-dependencies as defined in Section IV-D and IV-C,
respectively. By using EDF to generate the static schedules
we effectively reduce the search space since we do not con-
sider all task inter-leavings, i.e., all possible placements and
preemptions for the task set, but limit the search to combina-
tions of feasible task offsets and deadlines and let EDF gen-
erate the final schedule. Moreover, the restricted input
domains for offsets and deadlines further reduce the required
search space in the optimization problem.

V. Industrial Case Experience

[0102] A. Project Description

[0103] We take as a reference project TTE-IND, which
triggered the development of TT-RTS for a large industrial
development of ACME Corp. The project is currently in an
advanced phase of development and has successfully fulfilled
several intermediate test and integration phases.

[0104] The network topology of the industrial application
consists of 4 pairs of TTE-switches (in total 8 switches) and
up to 80 TTEthernet end-systems (nodes) connected to the
switches (70 end-systems with communication speed of 100
Mbit/s and 4 with 1 Gbit/s). The communication speed
between switches is 1 Gbit/s. The 100 Mbit/s end-systems
communicate with 1 Gbit/s nodes and vice-versa via time-
critical TT-messages that contain safety-critical payload.
Diagnostic messages sent between end-systems and switches
are sent through best-effort or rate-constrained messages.
Each TTEthernet end-system has at its core a TMS570 MCU
(certified up to IEC61508/SIL3) from Texas Instruments
equipped with an ARM Cortex-R4F processor (and an addi-
tional processor in lock-step with error detecting logic) run-
ning at 180 MHz.

[0105] B. Test Setup

[0106] For testing purposes we have an internal test setup
where we conduct our performance and integration tests. The
test-bed (seen in FIG. 3) consists of 1 TTE-switch connected
with 3 TTEthernet end-systems (TTE-A, TTE-B, TTE-C), as
described above, running TT-RTS. Additionally, there is 1 PC
which monitors network communication through the switch
monitoring port and also provides a serial connection to one
of the end-system for console output. On each of the 3 end-
systems there are 11 TT tasks, as listed in FIG. 9. Out of them,
7 are free (F) tasks and 4 have dependencies to TT-messages
(VLID). On end-system TTE-C, which we use as a reference
for our experiments, task TT-RX is a consumer task (C) with
dependency to TT-message with VLID ACO while task TT-
TX is a producer task (P) with dependency to VLID CAO.
Tasks TT-CP1 and TT-CP2 are consumer then producer tasks
(C&P) with dependencies to VLID pairs (BC,CB) and (AC,
CA), respectively. As these are the main control tasks, defined
by a tight period of 1 ms, they consume sensor data and
produce actuator values. The system also contains BE tasks
(not shown) performing network functions like SNMP and
ICMP servers as well as logging among others. Equivalent
TT-tasks running on different end-systems need to have mini-
mal end-to-end latency and low jitter while the BE-tasks do
not have any timing requirements.

[0107] We introduce three types of rigidity for TT-tasks,
namely High-, Medium-, and Low-rigidity. These rigidity
classes map to the different task latency requirements identi-
fied for the presented industrial application. In this test-bed
we do not have inter-task dependencies. Therefore, we take
the input domains for the TUFs of tasks that have been defined
in Section IV-D. For the offset TUF, the input domain remains

Aug. 25,2016

{t}, where t° is the critical time instant for the consumer
task. Moreover, TUF *(t,°)=1. We define our set of deadline
TUFs for consumer tasks as shown in FIG. 5, that is:

[0108] For high rigidity tasks, the deadline TUF>#
input domain is {¢,+C,} and TUF, (¢,+C;)=1. Hence,
high rigidity tasks can only be scheduled with minimal
latency.

[0109] For medium rigidity tasks, the deadline TUFi®*
value decreases linearly between the critical time instant
and the end of the period, hence the input domain is
[0+C;, T,].

[0110] For low rigidity tasks, the deadline TUFi” input
domain is {T,} and TUFi”*(T)=1. Hence, for low
rigidity TT-tasks we give the maximum flexibility for
EDF to schedule the task. The analogous case can be
made symmetrically for the TUFs of a producer task, in
which the critical time instant is set as the deadline of the
task—fixed by the beginning of the TT-message trans-
mission window—minus its WCET.

[0111] C. Schedule Generation

[0112] We have designed and implemented a tool for the
generation of static schedules based on the approach dis-
cussed in this paper. The tool takes as inputs the TTEthernet
network schedule together with user-defined TT-tasks as well
as their dependencies to TT-messages and performs the task
set transformation as defined in Section IV-A. The offsets and
deadlines of the resulting EDF task set are expressed in form
of input domains as discussed in Section IV-D. These inter-
vals are used to generate the constrained optimization prob-
lem. When the optimal combination of task properties is
found, the tool simulates the resulting EDF schedule until the
hyperperiod and outputs the result in form ofa TT-RTS sched-
ule configuration.

[0113] For the system described in Section V-B we obtain a
CPU utilization 0f 90% for TT-tasks while the rest of the CPU
is used for BE-tasks. The tight real-time requirements of the
tasks combined with high system utilization result in a diffi-
cult scheduling problem. Moreover, if one would enumerate
all possible schedules and choose the ones that satisfy the
constraints (similar to classical approaches), the solution
space would be very large. The solution space for one end-
system using our method contains 9690 possible task sets (i.e.
combinations of task properties) mainly due to the medium
rigidity tasks TT-TX and TT-RX. Using our tool, the genera-
tion of the static schedule takes 1920 ms. FIG. 4 shows the
generated schedule for end-system TTE-C. The macrotick
length is 50 us and the schedule cycle length is 200 macrot-
icks. Tasks TT-TX, TT-RX, TT-CP1, and TT-CP2 which have
dependencies to the TT-messages with VLIDs CA0,AC0, BC
and CB, AC and CA, respectively, are scheduled such that the
latency is minimized while the other TT-tasks are scheduled
such that their deadlines are met.

[0114] D. Implementation Remarks

[0115] During the development and deployment of TT-RTS
we identified several issues, of which some are worth addi-
tional remarks. On one hand, the overhead of TT-RTS has a
direct impact on the optimality at run-time of the generated
schedule (Section V-D1). On the other hand, since task dis-
patching and network communication occur in different time-
domains, it is necessary to guarantee precise time synchroni-
zation between the run-time system and the TTEthernet
network. To this extend, we take into account inaccuracies of
the synchronization and try to minimize their impact (Section
V-D2) with regard to the end-to-end properties.

US 2016/0246646 Al

[0116] 1) Scheduler overhead: The overhead that a TT-task
experiences at run-time comes from the overhead of saving
and restoring the context of a task, servicing the periodic
timer interrupt for the logical macrotick, and handling the
internal data structures of the offline schedule. We denote the
worst case overhead experienced by a task on each macrotick
by 6. Given the computation time C*7 of TT and the macrotick
length mT, we incorporate the scheduler overhead (similar to
[12]) by computing the WCET of the corresponding trans-
formed task as

c,-=c‘.TT+{ d }6
m

[0117] Our implementation of the TT-RTS scheduling
algorithm is O(1) with respect to the number of TT- and
BE-tasks, however our experience has shown a variation of
the scheduling overhead between 400 ns and 4 s, depending
on the scheduling decision and the internal state of the sys-
tem. FIG. 6 depicts the average global TT-RTS overhead as a
percentage of the total CPU bandwidth with respect to the
macrotick length. The numbers were obtained measuring the
time spent in the TT-RTS routines on one end-system execut-
ing the schedule described above with task WCETs scaled
based on the macrotick length.

[0118] 2) Synchronization of TT-RTS 1o TTEthernet time:
We synchronize the TT-RTS schedule cycleto the TTEthernet
cycle (TTE-cycle) using rate correction. Specifically, the
duration of the macrotick can be modified for a specified
interval (called synchronization interval) in order to align the
TT-RTS cycle to the TTE-cycle. Within the synchronization
interval only BE-tasks are allowed to run since, otherwise,
any variationin the length ofa macrotick may lead to deadline
misses of TT-tasks.

[0119] InFIG. 7 we present an experiment conducted with
the above setup where we measured the difference between
the TT-RTS and the TTEthemnet network time over 10000
cycles. In the upper part of the figure we have 1 and in the
lower part 2 synchronization intervals, each of length 2 mac-
roticks. The maximum observed error in the first ran was 776
ns while the synchronization jitter was around 248 ns on
average. In the second run with two synchronization inter-
vals, the maximum observed error was 604 ns and the average
error was 188 ns.

[0120] We accommodate for this jitter by introducing a
fixed parameter to the offset of consumer tasks and to the
deadline of producer tasks. Let y be the synchronization jitter,
1,° and 1, are the beginning of a produced and the end of a
consumed TT-message, respectively, and tasks T, and v, are
the two associated TT-tasks. We can thus write that D,=t7—y
and ¢, =t +y. For consumer then producer tasks we increase
the required interval between the two messages by the syn-
chronization jitter.

[0121] E. System Tests

[0122] Using the test setup described in Section V-B we
have conducted an end-to-end precision experiment where
we measured the maximal cumulated error of the synchroni-
zation. We have instrumented each end-system to trigger an
/O pin when the task TT-USER is executed and measured the
trigger using an oscilloscope. We performed an overlay of the
measurements on top of each-other using the oscilloscope for
each end-system with TTE-A as a reference trigger (FIG. 8).

Aug. 25,2016

The maximum difference between any two triggers on any
two end-systems was 4.22 us over a measuring period of 30
min. Note that the presented upper bound is computed
between any two measurements due to the limitations of the
measuring instrumentation. The actual upper bound on the
precision may be significantly lower if we consider the dif-
ference between any two end-systems for the same measure-
ment.

VI. Related Work

[0123] The scheduling of task sets with dependencies has
been studied for many years by different authors. Task inter-
dependencies are solved in [10] by modifying the offsets and
deadlines of tasks and then using EDF to schedule the new
task set [5, p. 71]. In [13] the notion of absolute and relative
timing constraints are introduced which are similar to our
producer and consumer requirements. In [14] the iterative
deepening method, enhanced with a heuristic function that
reduces runtime at the expense of optimality, is used for
scheduling periodic tasks that communicate through proto-
cols with bounded transmission times. Follow-up work [15]
combines the offline method with a runtime dynamic mecha-
nism to schedule aperiodic tasks. For fixed-priority systems,
the work in [16] presents an analysis of the schedulability of
tasks that communicate using the TDMA protocol. Several
scheduling approaches for communicating tasks have been
presented in [17] and [18] that are based on optimization
problems. These approaches deal with precedence relations
among tasks (regardless if they arise from communication or
not) whereas we look at explicit task dependencies to a pre-
defined network schedule.

VII. Conclusion

[0124] We have presented a generalized method extending
the deterministic paradigm of TTEthernet towards the soft-
ware layers, allowing the execution of real-time distributed
applications with end-to-end guarantees. Our work is aimed
at generating optimal static time-triggered schedules for user-
defined task sets with guaranteed minimal end-to-end latency.
We have provided means to express task dependencies to an
existing TTEthernet communication schedule as well as
inter-task dependencies as a constrained optimization prob-
lem minimizing the end-to-end responsiveness towards
scheduled messages. Our approach uses mechanisms from
dynamic priority scheduling to effectively reduce the solution
space without loss of optimality. The presented process and
tools are currently on deployment in large industrial applica-
tions as the one we have introduced in this paper.

REFERENCES

[0125] [1] W. Steiner, G. Bauer, B. Hall, and M. Paulitsch,
“TTEthernet: Time-Triggered Ethernet,” in Time-Trig-
gered Communication, R. Obermaisser, Ed. CRC Press,
August 2011.

[0126] [2] Issuing Committee: As-2d2 Deterministic Eth-
ernet And Unified Networking, “SAE AS6802 time-trig-
gered ethernet,” 2011. [Online]. Available: http://stan-
dards.sae.org/as6802/[3]

[0127] [3] W. Steiner, “TTEthernet specification,” TTA
Group, 2008. [Online]. Available: http://www.ttagroup.org

[0128] [4] W. Steiner and B. Dutertre, “Automated formal
verification of the TTEthernet synchronization quality,” in

US 2016/0246646 Al

NASA Formal Methods, ser. Lecture Notes in Computer
Science. Springer, 2011, vol. 6617.

[0129] [5] G.C. Buttazzo, Hard Real-time Computing Sys-
tems: Predictable Scheduling Algorithms And Applica-
tions (Real-Time Systems Series). Springer-Verlag, 2004.

[0130] [6] C.L.Liuand J. W. Layland, “Scheduling algo-
rithms for multiprogramming in a hard-real-time environ-
ment,” Journal of the ACM, vol. 20, pp. 46-61, 1973.

[0131] [7] P. Liand B. Ravindran, “Adaptive time-critical
resource management using time/utility functions: Past,
present, and future,” in Proc. COMP-SAC. IEEE Computer
Society, 2004.

[0132] [8] S. K. Baruah, L. E. Rosier, and R. R. Howell,
“Algorithms and complexity concerning the preemptive
scheduling of periodic, real-time tasks on one processor,”
Real-Time Syst., vol. 2, no. 4, 1990.

[0133] [9] R. Pellizzoni and G. Lipari, “Feasibility analysis
of real-time periodic tasks with offsets,” Real-Time Syst.,
vol. 30, no. 1-2, pp. 105-128, 2005.

[0134] [10] H. Chetto, M. Silly, and T. Bouchentouf,
“Dynamic scheduling of real-time tasks under precedence
constraints,” Real-Time Syst., vol. 2, no. 3, pp. 181-194,
1990.

[0135] [11]J. Forget, E. Grolleau, C. Pagetti, and P. Rich-
ard, “Dynamic priority scheduling of periodic tasks with
extended precedences,” in Proc. ETFA. IEEE Computer
Society, 2011.

[0136] [12]S.S. Craciunas, C. M. Kirsch, and A. Sokolova,
“Response time versus utilization in scheduler overhead
accounting,” in Proc. RTAS, 2010.

[0137] [13] S. Choi and A. K. Agrawala, “Scheduling of
real-time tasks with complex constraints,” in Performance
Evaluation: Origins and Directions. Springer-Verlag,
2000.

[0138] [14] G. Fohler, “Flexibility in statically scheduled
real-time systems,” Ph.D. dissertation, TNF, April 1994.
[0139] [15]D. Isovic and G. Fohler, “Handling mixed sets
of tasks in combined offline and online scheduled real-time
systems,” Real-Time Syst., vol. 43, no. 3, pp. 296-325,

2009.

[0140] [16]K. Tindell andJ. Clark, “Holistic schedulability
analysis for distributed hard real-time systems,” Micropro-
cess. Microprogram., vol. 40, 1994.

[0141] [17] T. F. Abdelzaher and K. G. Shin, “Combined
task and message scheduling in distributed real-time sys-
tems,” IEEE Trans. Parallel Distrib. Syst., vol. 10, no. 11,
pp. 1179-1191, 1999.

[0142] [18] D.-T. Peng, K. Shin, and T. Abdelzaher,
“Assignment and scheduling communicating periodic
tasks in distributed real-time systems,” IEEE Trans. Softw.
Eng., vol. 23, no. 12, pp. 745-758, 1997.

1. Method for executing tasks in a computer network,
wherein said computer network comprises nodes and option-
ally atleast one starcoupler, wherein said nodes are connected
to each other, directly, for example via a bus or a bus system,
and/or by said at least one starcoupler and/or by at least one
multi-hop network, and wherein in said computer network
nodes exchange time-triggered messages,

characterized in that

said tasks are executed on nodes and/or on the at least one
starcoupler according to a static task schedule, wherein
said task schedule is computed by the following steps:

Aug. 25,2016

a) transforming a defined task set to a periodic asynchro-
nous task model (p1), preferably an EDF task model
(p1), yielding a first quantity of task sets;

b) applying a feasibility test (p2) to the first quantity of task
sets obtained in step a) for reducing the number of task
sets to a second quantity of task sets (s1), a so-called
schedulable task sets (s1);

¢) applying a precedence test (p3) to the second quantity of
task sets obtained in step b), producing a subset of task
sets of the second quantity of task sets, said subset of
task sets comprising the so-called compliant task sets
(s2):

d) applying a criteria (p4) over the set of compliant task sets
(s2), resulting in one task set, a so-called “final” task set
(s3).

2. Method according to claim 1, wherein a dynamic sched-
uling algorithm simulator (p5), preferably an EDF simulator,
more preferably an offline EDF simulator, generates, based
on the final task set (s3), a schedule, the so called final sched-
ule.

3. Method according to claim 1 or 2, wherein in step d) an
optimal criteria (p4) is applied over the set of compliant task
sets (s2), resulting in one task set, a so called optimal task set
(s3).

4. Method according to one of the claims 1to 3, wherein the
task schedule is computed offline.

5. Method according to one of the claims 1 to 4, wherein
dependencies with TT-messages for those tasks involved in
the production or consumption of payload data are considered
during the specification of task parameters.

6. Method according to one of the claims 1to 5, wherein the
static schedule is calculated by taking into account the depen-
dencies of tasks to a network schedule of the computer net-
work.

7. Method according to one of the claims 1to 6, wherein the
static schedule is calculated by taking into account interde-
pendencies of different tasks.

8. Method according to one of the claims 1 to 7, wherein
each task set of the compliant task sets (52) is assigned a
utility function, preferably a Time Utility Function (TUF)
evaluating the optimality of each possible parameter value.

9. Method for calculating task parameters and/or task
schedules in a computer network, wherein said computer
network comprises nodes and optionally at least one starcou-
pler, wherein said nodes are connected to each other, directly,
for example via a bus or a bus system, and/or by said at least
one starcoupler and/or by at least one multi-hop network, and
wherein in said computer network nodes exchange time-
triggered messages,

characterized in that

said tasks are executed on nodes and/or on the at least one
starcoupler according to a static task schedule, wherein
said task schedule is computed by the following steps:

a) transforming a defined task set to a periodic asynchro-
nous task model (p1), preferably an EDF task model
(p1), yielding a first quantity of task sets;

b) applying a feasibility test (p2) to the first quantity of task
sets obtained in step a) for reducing the number of task
sets to a second quantity of task sets (s1), a so-called
schedulable task sets (s1);

¢) applying a precedence test (p3) to the second quantity of
task sets obtained in step b), producing a subset of task

US 2016/0246646 Al

sets of the second quantity of task sets, said subset of
task sets comprising the so-called compliant task sets
(s2).

d)applying a criteria (p4) over the set of compliant task sets
(s2), resulting in one task set, a so-called “final” task set
(s3).

10. Method according to claim 9, wherein a dynamic
scheduling algorithm simulator (p5), preferably an EDF
simulator, more preferably an offline EDF simulator, gener-
ates, based on the final task set (s3), a schedule, the so called
final schedule.

11. Method according to claim 9 or 10, wherein in step d)
an optimal criteria (p4) is applied over the set of compliant
task sets (s2), resulting in one task set, a so called optimal task
set (s3).

12. Method according to one of the claims 9 to 11, wherein
the task schedule is computed offline.

13. Method according to one of the claims 9 to 12, wherein
dependencies with TT-messages for those tasks involved in
the production or consumption of payload data are considered
during the specification of task parameters.

14. Method according to one of the claims 9 to 13, wherein
the static schedule is calculated by taking into account the
dependencies of tasks to a network schedule of the computer
network.

15. Method according to one of the claims 9 to 14, wherein
the static schedule is calculated by taking into account inter-
dependencies of different tasks.

16. Method according to one of the claims 9 to 15, wherein
each task set of the compliant task sets (s2) is assigned a
utility function, preferably a Time Utility Function (TUF)
evaluating the optimality of each possible parameter value.

17. Computer network comprising nodes and optionally at
least one starcoupler, wherein said nodes are connected to
each other, directly, for example via a bus or a bus system,
and/or by said at least one starcoupler and/or by at least one
multi-hop network, and wherein in said computer network
nodes exchange time-triggered messages,

characterized in that

said tasks are executed on nodes and/or on the at least one

starcoupler according to a static task schedule, wherein
said task schedule is computed by the following steps:

10

Aug. 25,2016

a) transforming a defined task set to a periodic asynchro-
nous task model (p1), preferably an EDF task model
(p1), yielding a first quantity of task sets;

b) applying a feasibility test (p2) to the first quantity of task
sets obtained in step a) for reducing the number of task
sets to a second quantity of task sets (s1), a so-called
schedulable task sets (s1);

¢) applying a precedence test (p3) to the second quantity of
task sets obtained in step b), producing a subset of task
sets of the second quantity of task sets, said subset of
task sets comprising the so-called compliant task sets
(s2):

d)applying a criteria (p4) over the set of compliant task sets
(s2), resulting in one task set, a so-called “final” task set
(s3).

18. Computer network according to claim 17, wherein a
dynamic scheduling algorithm simulator (p5), preferably an
EDF simulator, more preferably an offline EDF simulator,
generates, based on the final task set (s3), a schedule, the so
called final schedule.

19. Computer network according to claim 17 or 18,
wherein in step d) an optimal criteria (p4) is applied over the
set of compliant task sets (s2), resulting in one task set, a so
called optimal task set (s3).

20. Computer network according to one of the claims 17 to
19, wherein the task schedule is computed offline.

21. Computer network according to one of the claims 17 to
20, wherein dependencies with TT-messages for those tasks
involved in the production or consumption of payload data are
considered during the specification of task parameters.

22. Computer network according to one of the claims 17 to
21, wherein the static schedule is calculated by taking into
account the dependencies of tasks to a network schedule of
the computer network.

23. Computer network according to one of the claims 17 to
22, wherein the static schedule is calculated by taking into
account interdependencies of different tasks.

24. Computer network according to one of the claims 17 to
23, wherein each task set of the compliant task sets (s2) is
assigned a utility function, preferably a Time Utility Function
(TUF), evaluating the optimality of each possible parameter
value.

	Bibliography
	Abstract
	Drawings
	Description
	Claims

