a9y United States

US 20230089528A1

a2y Patent Application Publication o) Pub. No.: US 2023/0089528 A1

Oliver et al. 43) Pub. Date: Mar. 23, 2023
(54) METHOD TO EXECUTE A (52) US. CL
MODE-TRANSITION IN A MULTI-MODE CPC ... GO6F 9/44505 (2013.01); GOGF 9/546
COMPUTER SYSTEM (2013.01); GO6F 9/4887 (2013.01)
(71) Applicant: TTTech Auto AG, Wien (AT) (57) ABSTRACT

(72) Inventors: Ramon Serna Oliver, Wien (AT);
Paraskevas Karachatzis, Wien (AT);
Silviu Craciunas, Wien (US)

(21) Appl. No.: 17/930,811

(22) Filed: Sep. 9, 2022

(30) Foreign Application Priority Data
Sep. 14, 2021 (EP) .coooveieiieiiciciee 21196682.5
Publication Classification
(51) Imt. ClL
GO6F 9/445 (2006.01)
GO6F 9/54 (2006.01)
GO6F 9/48 (2006.01)

A method to execute a mode-transition in a multi-mode
computer system from a current to a future mode during
run-time of the computer system, wherein the computer
system comprises hosts with processing cores. A mode-
transition is determined by a transition definition, wherein
all transition definitions form a set of transition definitions,
and wherein a transition definition between two defined
modes comprises a reference to the initial mode, a reference
to the future mode, and a list of specific actions to be
executed during the mode-transition. A first function runs on
a host of the hosts. A second function runs on a processing
core of the hosts. Third functions are provided, wherein a
third function is running on a processing core in each of the
hosts of the computer system. Fourth functions are provided,
wherein on each processing core of the computer system a
fourth function is running.

Wait m2 from third)

function

|
Received m2

C

2

changes

ompute configuratior)

v

Send m3 to third) m3|=NACK

function

I
m3=PACK
A 4

function

Wait mé from third) m6=REJECT

Received m6=PREPARE

\ 4

Send m7=READY to
third function

v

Wait m10 from third \

function in host J m10=REJECT

m10=ACTIVATE

v

AN N N N Y

Apply configuration

changes

Patent Application Publication Mar. 23,2023 Sheet 1 of 4 US 2023/0089528 A1

Wai .
[ait for .mput l
condltnon
[end mO= REQUES\ ves
to second functlonj
\
4

Reporterror

Check transition
success

N

Fig. 1

Wait m0 from first
—- function
I
mO=REQUEST

\ 4
i [Send m1=REQUEST to
thrird functions
(Wait m4 from third
m4=PACK
functlons) —1
ma= pACK Send m5=REJECT to
third functions
Send m5= PREPARE to
M8=REJECT
third functions '1
Send m9=REJECT to
Wait m8 from all third third functions
funct;ons
m8= READY

Send m9=ACTIVATE to
third functions

Fig. 2

Patent Application Publication = Mar. 23,2023 Sheet 2 of 4 US 2023/0089528 A1

Wait m1 from second
function

T
Received m1
A 4

b

N Y N M)

Send m2 to fourth
functions

v

Wait m3 from fourth
functions

M3=NACK—l
(Send m4=NACK)—

T
m3=PACK
A 4

Send m4=PACK to
second function

v

Wait m5 from second
function

m5=PREPARE

Send m6=PREPARE to all
fourth functions Send m6=REJECT
Wait m7 from fourth
M7=REJECT
functlons in host _l
m7 = READY)
\ 4 [Send m8=REJECT
[Send m8=READY to]

M5=REJECT;

second function

Wait m9 from second
m9=REJECT:
function |

mo9= A$’IVATE (Send m10=REJECT

Send m10=ACTIVATE to
fourth functions

Fig. 3

Patent Application Publication = Mar. 23,2023 Sheet 3 of 4 US 2023/0089528 A1

Wait m2 from third
functlon

Rece|ved m2

Compute conflgu ration
changes

)

Send m3 to third) 3, NACK

functlon

m3= PACK

Wait mé6 from third m6=REJECT
functlon

Received m6 PREPARE

v

Send m7=READY to
third function

v

Wait m10 from third
function in host

m10=ACTIVATE

\ 4

Apply configuration
changes

m10=REJECT

N/ "

Fig. 4

Patent Application Publication = Mar. 23,2023 Sheet 4 of 4 US 2023/0089528 A1

120
130
110
100 140
160
Fig. 5
200 — 300 \
310
210 —_| //
400 \
320
220 ——| —

\ /

20— P _—330

Fig. 6

US 2023/0089528 Al

METHOD TO EXECUTE A
MODE-TRANSITION IN A MULTI-MODE
COMPUTER SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority to and the benefit
of European Application No. 21196682.5, filed Sep. 14,
2021, which is hereby incorporated by reference herein in its
entirety.

FIELD

[0002] The invention relates to a method to execute a
mode-transition in a multi-mode computer system, in par-
ticular in a multi-mode automotive computer system, from
a current mode to a future mode of a set of defined modes
during run-time of the computer system, wherein
[0003] said computer system is running in a current, active
mode, and wherein
[0004] said computer system comprises a set of two or
more processing cores, and wherein
[0005] said computer system comprises one host, which
host comprises said set of processing cores, or wherein
[0006] said computer system comprises two or more
hosts, wherein each of said hosts comprises one or
more of said set of processing cores,
[0007] and wherein each processing core in said set of
processing cores is configured to run one or more software
components of a set of defined software components, and
wherein a set of two or more modes is provided.
[0008] Furthermore the invention relates to a computer
system comprising a set of two or more processing cores,
wherein said computer system comprises one host, which
host comprises said set of processing cores, or wherein said
computer system comprises two or more hosts, wherein each
of said hosts comprises one or more of said set of processing
cores, and wherein each processing core in said set of
processing cores is configured to run one or more software
components of a set of defined software components, and
wherein a set of two or more modes is provided.

BACKGROUND

[0009] Automotive systems have significantly evolved in
the last decades. Modern automotive systems may comprise
complex computer systems often including multiple hosts,
which may comprise multiple processing cores, intercon-
nected via communication networks, like Ethernet or PCle.
In some cases, automotive computer systems may include
dedicated processing cores like graphic processing units,
GPU, or deep neural network, DNN, engines, as well as
general-purpose processing cores. In other cases, automo-
tive computer systems may comprise virtualize resources,
like virtual processing cores or virtual network components.
[0010] Computer systems may comprise run-time systems
providing an execution environment for software compo-
nents, like operating systems or software platforms. Oper-
ating systems may run on either physical or virtualized
processing cores and provide methods to, among others,
access hardware components. Software platforms, including
middleware and protocol stacks, may provide additional
services to software components to perform certain opera-
tions, like those related to the synchronization of tasks, error
handling, monitoring, communication, or configuration. In

Mar. 23, 2023

other cases, software components may be developed to run
without the support of run-time systems, so called bare-
metal software.

[0011] Automotive systems generally comprise a reper-
tory of critical and non-critical functions, among which
those comprised in the so-called Advanced Driver Assis-
tance Systems, ADAS, in modern automotive systems may
require the execution of a large number of software com-
ponents. ADAS functions include, for example, a plurality
of autonomous driving features, like lane centering assis-
tance, LCA, collision avoidance system, CAS, traffic sign
recognition, TSR, or autopilot.

[0012] Software components, fully or partially imple-
menting those functions, may run simultaneously in one or
multiple of said processing cores, within a single host or
distributed among multiple hosts. Besides core processing
time, some software components may fully or partially
utilize other resources in the automotive system, like net-
work bandwidth or memory, which may be limited due to
hardware construction.

[0013] The amount of automotive functions that an auto-
motive platform can execute may be limited in an automo-
tive system by the availability of resources, and, particularly,
the availability of hardware components. The development
of new hardware components allowing to design automotive
systems capable to execute a larger number of software
components may not scale as fast as the market demands to
develop and deploy new automotive functions, which may
exceed the resource limits of existing automotive systems.
However, not all automotive functions comprised in an
automotive system may always need to run. For example, an
automatic parking system function, APS, may not be
required to perform its job while the automotive system is
operated on a motorway, whereas the adaptive cruise control
function, ACC, may not be required while parking. More-
over, in some cases, an automotive function may require
different amounts of resources depending on the operational
situation. For example, a navigation system may require
more memory and rendering resources to display a naviga-
tion map while driving through a dense metropolitan area
than while doing so along a desert road.

[0014] Therefore, it is desirable to configure an automo-
tive system to adapt the set of active, running, automotive
functions based on defined circumstances that arise during
operation, allowing one or more software components to
remain inactive, not running, at selected point in time.
Inactive software components may need to be (re)initialized
prior to restoring operation to acquire, or register, the
resources they need to run, while active software compo-
nents may need to be de-initialized to release, or unregister,
resources while being inactive. One means to do so is to
define a plurality of so-called modes, representing operation
use-cases, wherein each mode comprises a subset of the set
of automotive functions required to run when defined opera-
tion conditions are met. For example, one such mode may
correspond to motorway driving, while others may corre-
spond to urban driving, parking, off-road driving, or traffic
jam driving.

[0015] An automotive system comprising multiple modes
may need to manage the activation of those modes during
operation ensuring that the transition between modes is
carried in a coordinated manned between all hosts and
processing cores, for example, guaranteeing the necessary
resources for each running software component and the right

US 2023/0089528 Al

timing while performing the transition. Uncontrolled mode
transitions may have catastrophic consequences, especially
if anyone of the involved automotive functions performs
critical tasks. Therefore, it is desirable to have mechanisms
to switch between modes and coordinate the execution of
related software components in a controlled and safe manner

SUMMARY

[0016] It is an objective of the invention to provide a
method to configure multiple modes in a multi-host and/or
multi-core automotive system, whereby each said modes
comprises a subset of a set of software components, fully or
partially implementing automotive functions. It is also an
objective of the invention to provide a method to perform the
transition between said modes during operation in a con-
trolled and safe manner
[0017] This objective is achieved with a method and a
computer system described above, wherein each mode of
said set of modes comprises
[0018] a unique mode identifier, MODE ID, for
example an index in a defined table of modes, or a
memory pointer, or a unique name identifying the
mode, or the result of a hash function, or an arbitrary
reference globally and unambiguously identify the
mode, and
[0019] a set of references to software components from
the set of defined software components, wherein when
a mode is active, all listed software components of said
mode are running in one or more processing cores of
the set of processing cores of the computer system,
[0020] and wherein
[0021] only one mode from the defined set of modes can
be active in said computer system at a time, and wherein
[0022] the mode-transition, that is the transition from the
current, active mode to a future defined mode, is executed at
runtime, during operation, of the computer system, wherein
[0023] a mode-transition is determined by a transition
definition, wherein for each allowed mode-transition a tran-
sition definition is provided, wherein all transition defini-
tions form a set of transition definitions, and wherein a
transition definition between two defined modes comprises

[0024] a reference to the initial mode
[0025] a reference to the future mode
[0026] alist of specific actions to be executed during the

mode-transition, wherein
[0027] said list of specific actions comprises information
of necessary steps to execute said mode-transition, such as

[0028] de-initialize a software component of the set of
software components in the current, old, mode, and/or

[0029] un-register resources, like memory, hardware
devices, or software services, not anymore required in
the future, new, mode, and/or

[0030] initialize a software component of the set of
software components in the new mode,

[0031] register resources, like memory, hardware
devices, or software services, required by software
components in the new mode, and/or

[0032] (re)configure the runtime system of one or mul-
tiple processing cores to run the set of software com-
ponents in the new mode, and/or

[0033] reconfigure software services like error handlers,
monitoring systems, watchdogs, and/or middleware, to
the new set of software components in the new mode,

Mar. 23, 2023

[0034] wherein each specific action may comprise instruc-
tions, including system calls provided by an operating
system or the software platform, hyper-calls provided by a
hypervisor, and/or instructions to directly operate on bare-
metal, which need to be executed in one or multiple of said
hosts to perform the defined action,
[0035] and wherein each action in said list of specific
actions, in particular additionally, may comprise a defined
time-budget for said action to be completed during runtime,
and wherein, said transition definition additionally com-
prises one or more optional points in time, relative to the
runtime of the software components in the old mode, when
the mode-transition can be initiated,
[0036] and wherein said set of transition definitions and
said set of modes are available to all processing cores in said
set of processing cores, for example by either
[0037] storing a full or partial copy in a memory space
related to each processing core in the set of processing
cores, or
[0038] storing a full or partial copy in a memory space
related to each host in the set of hosts, said memory
space being accessible among all processing cores
related to said host, or
[0039] storing a full or partial copy in a central memory
space, whereby access to said memory space is possible
from all processing cores in the set of processing cores,
or
[0040] encoding said set of transition definitions with
instructions in all, or a subset, of the hosts and pro-
cessing cores, whereby said instructions are sufficient
to extract the information of said set of transition
definitions and make it available to all processing cores
in the set of processing cores,
[0041] wherein
[0042] (1) a first function, the so-called function “Cus-
tomModeHandler”, is provided, which first function is run-
ning on a host of the hosts of the computer system, wherein
said first function
[0043] (a)receives arequest to execute a transition from
a current, active mode to a defined future mode, the
“new” mode, for example by means of a human-
machine interface or as a result of an automated algo-
rithm, and
[0044] (b) after receiving said request selects the tran-
sition definition from said set of transition definitions
for said mode-transition, said transition definition
defining the mode-transition from the actual active
mode to the future, new mode, and wherein
[0045] said first function computes, based on said transi-
tion definition, a point in time in the future, the “activation
point in time”, at which activation point in time said new
mode shall become active, and wherein said computation
takes into account
[0046] one of said optional points in time in the tran-
sition definition, or
[0047] a globally defined relative point in time for the
initiation of the transition, like a point in time at the end
of a schedule cycle (hypercycle), or a point in time at
the end of a predefined interval, or
[0048] the immediately next possible point in time after
the reception of said request, or
[0049] a point in time according to a defined static
assignment of transition points in time, for example, a
timetable, or

US 2023/0089528 Al

[0050] the result of a dynamic algorithm assessing the
current runtime status of the system, including safety
considerations, operational metrics, and/or historical
data, or

[0051] apoint in time optionally received alongside said
request to execute a transition,

[0052] (2) a second function, the so-called function “Mod-
eSwitchManager”, is running on a processing core of the
hosts in the computer system,

[0053] and wherein the first function transmits a message,
the so-called m0O-message, to said second function, wherein
[0054] said mO-message comprises

[0055] a reference to the new mode, and

[0056] the computed activation point in time,

[0057] (3) third functions, the so-called “ModeSwitchEx-
ecutor” functions, are provided, wherein a third function is
running on a processing core in each of the hosts of the
computer system,

[0058] and wherein the second function, after receiving
the mO-message, propagates the information of said
mO-message via messages, the so-called m1-messages, to
third functions or to each of said third functions, wherein
each m1-message is a MODE REQUEST message compris-
ing

[0059] the received reference to the new mode, and

[0060] the activation point in time in the future of the
new mode,

[0061] and wherein

[0062] third functions receive an m1-message requesting a
mode-transition in the processing cores of its related hosts,
wherein

[0063] (4) fourth functions, the “Scheduler” functions, are
provided, wherein on each processing core of the computer
system a fourth function is running, and wherein

[0064] third functions, after receiving the ml-message,
distribute the information of said ml-message to fourth
functions running on a processing core comprised in the host
related to said third functions via a message or messages, the
so-called m2-message(s), wherein each m2-message is a
REQUEST message including

[0065] the received reference to the new mode

[0066] as well as the activation point time for the new
mode,

[0067] and wherein

[0068] fourth functions extract, after receiving an
m2-message, the reference to the new mode and the activa-
tion point in time from the received m2-messages and
compute the necessary changes in the configuration of the
processing core in which said fourth function is running, so
that the software components, which have to run on the
processing core according to the new mode can be activated,
and wherein

[0069] said computation of changes in the configuration is
based on

[0070] the current runtime state of the processing core,
and

[0071] the characteristics of the runtime system of the

processing core, like its operating system, scheduling
policy or task dispatching mechanism, hypervisor or
virtualization layers, or characteristics related to the
runtime configuration of software components and
resources, and

[0072] the new and old modes,

Mar. 23, 2023

[0073] and wherein said computed changes in the con-
figuration comprise
[0074] the execution of a list of specific actions accord-
ing to said transition definition, and
[0075] the time-budget for each of said defined specific
action, and
[0076] and wherein
[0077] said fourth functions execute at the activation point
in time said changes in the configuration, so that the new
mode is activated.
[0078] Advantageous embodiments of the method and the
computer system according to the invention described above
are detailed hereinafter, wherein said embodiments may be
realized alone or in any arbitrary combination:
[0079] It may be provided that
[0080] (1) each fourth function, after receiving the m2
message from the third function, additionally performs local
checks on its processing core to assess if the configuration
changes on the processing core configuration according to
the new mode can be performed, in particular
[0081] safely performed, for example in compliance
with safety functional requirements, and/or
[0082] timely performed, for example with consider-
ation to said computed time and/or said defined time-
budget for said list of specific actions, and
[0083] sends a so-called m3 message to the third function
which is the source of the m2 message, wherein each
particular fourth function sends the m3 message to the third
function sourcing said m2 message, wherein
[0084] said m3 message is a NEGATIVE ACKNOWL-
EDGMENT message, if the changes cannot be per-
formed, and said fourth function finishes the mode
transition without performing configuration changes,
[0085] or
[0086] said m3 message is a POSITIVE ACKNOWL-
EDGMENT message if the changes can be performed,
and subsequently
[0087] (2) in the case that the m3 message is a POSITIVE
ACKNOWLEDGMENT message, said fourth functions
wait for the reception of a follow up message, the so-called
m6-message, from said third functions, wherein
[0088] if said received m6-message is a PREPARE mes-
sage, said fourth functions execute the following steps:
[0089] (i) computing the necessary changes on the
processing core configuration of the processing core on
which the fourth function is running, so that the soft-
ware components of the new mode can be activated
when said configuration is applied, and subsequently
[0090] (ii) sending a message, the so-called m7-mes-
sage, to the third function which is the source of the
m6-message, wherein
[0091] (ii.1) said m7-message is a READY message
indicating the readiness of said fourth function to
apply said configuration changes of the processing
core, and subsequently
[0092] (iii)) waiting for the reception of a follow up
messages, the so-called m10-message, from said third
function, wherein
[0093] (iv) if said m10-message is an ACTIVATION
message, activating said configuration changes and
finalize said mode change transition, or
[0094] (v) if said m10-message is a REJECT message,
finalize said mode change transition without applying
said configuration changes, or

US 2023/0089528 Al

[0095] (ii.2) said m7-message is a REJECT message
indicating said fourth function cannot apply said
configuration changes of the processing core, so that
said fourth function finishes the mode transition
without executing configuration changes,

[0096] or
[0097] if said m6-message is a REJECT message, final-
izes the mode transition without executing any con-
figuration changes,
[0098] and wherein
[0099] (3) said third functions, after sending the m2-mes-
sages to the fourth functions, wait for m3-messages (m3_1
... m3_n) from their corresponding fourth functions running
on each processing core, and, after receiving said m3-mes-
sages from their corresponding fourth functions communi-
cate a new message, the so-called m4-message, to the
second function, which is the source of the m1-message, and
wherein
[0100] said m4-message is a NEGATIVE ACKNOWL-

EDGMENT message, if at least one of said m3-mes-

sages is a NEGATIVE ACKNOWLEDGMENT mes-

sage, and said third function finishes the mode
transition without executing configuration changes, or
[0101] said m4-message is a POSITIVE ACKNOWL-

EDGMENT message, if all said m3-messages are

POSITIVE ACKNOWLEDGMENT messages, and

subsequently

[0102] (i) said third functions wait for a message, the
so-called m5-message, from the second function and
propagate said m5-message or the content of said
m5-message to its fourth functions, via the so called
m6-message, and
[0103] (i.1) if said m5-message is a REJECT mes-

sage, said m6-message is a REJECT message, and
said third function finishes the mode transition
without executing configuration changes, or
[0104] (i.2) if said m5-message is a PREPARE
message, said m6-message is a PREPARE mes-
sage, and subsequently executes the steps of:

[0105] (ii) waiting for messages, the so-called
m7-messages (m7_1 . . . m7_n) from the fourth
functions running on each related processing core
and subsequently communicate a new message, the
so-called m8-message, to the second function, which
is the source of the m5-message, and
[0106] (ii.1) if any of said m7-messages is a

REJECT message, said m8-message is a REJECT
message, and said third function finishes the mode

transition without executing configuration
changes, or
[0107] (ii.2) if said m7-messages are all READY

messages, said m8-message is a READY message,
and executes the steps of:
[0108] (iii) wait for a message, the so-called m9-mes-
sage, from the second function, and after receiving
said m9-message propagate said m9-message or the
content of said m9-message to the fourth functions
with a message, the so-called m10-message, and
[0109] (iii.1) if said m9-message is an ACTIVATE
message, said m10-messages are ACTIVATE mes-
sages, or

[0110] (iii.2) if said m9-message is a REJECT
message, said m10-messages are REJECT mes-

Mar. 23, 2023

sages, and said third function finishes the mode

transition without executing configuration
changes,

[0111] and wherein

[0112] (4) said second function, after sending the m1-mes-

sages to the third functions, waits for m4-messages (m4_1 .
.. m4_n) from the third functions running on each host, and
after receiving said m4-messages communicate a m5-mes-
sage to said third functions, and wherein,

[0113] if (a) said m4-messages (m4_1 . . . m4_n)
comprise a message of each host, and (b) each of said
m4-messages (m4_1 . m4_n) is a POSITIVE
ACKNOWLEDGMENT message, said m5-message is
a PREPARE message, and subsequently,

[0114] (i) said second function waits for messages, the
so-called m8-message (m8_i), from the third functions
running on each host (host_i), and, after receiving
m8-messages from said third functions, communicate a
new message, a so-called m9-message (m9), to said
third functions, wherein
[0115] (i.1) if said m8-messages (m8_1 . . . m8_n)

comprise an m8-message of each third function, and
if all said m8-messages are READY messages, said
m9-message is a ACTIVATE message, or otherwise

[0116] (i.2) said m9-message is a REJECT message,
[0117] or
[0118] otherwise, if (a) and/or (b) are not fulfilled, said

m5-message is a REJECT message and the mode
transition is terminated without performing configura-
tion changes.
[0119] It may be provided that the configuration changes
computed by one or more of said fourth functions include
the modification of a time-triggered schedule, for example a
schedule table, wherein said modifications are based on
[0120] a precomputed offline time-triggered schedule,
wherein all software components in the set of software
components of said new mode are included, or
[0121] an online computed time-triggered schedule,
wherein all software components in the set of software
components of said new mode are included, or
[0122] either a precomputed or online generated incre-
mental time-triggered schedule, wherein said incre-
mental time-triggered schedule comprises a set of nec-
essary modifications to the actual time-triggered
schedule to adapt to the changes between the set of
software components of said old mode and the sets of
software components of said new mode.
[0123] It may be provided that said first, second, third
and/or fourth function initiate timeout counters after sending
anyone of said messages mO . . . m10, and wherein said
counters are initialized with defined time intervals, wherein
said counters decrease with the progression of time, and
wherein said first, second, third, and/or fourth functions
limit the waiting time for messages to the time until said
counter timeout expires, and wherein if no message is
received within said timeout interval said function(s) is(are)
terminated without performing configuration changes.
[0124] It may be provided that at least one, preferably all
functions of the first, second, and third function are repli-
cated, wherein each function sending a message to a repli-
cated function sends a replicated message to each replica of
said replicated function, and wherein each function receiv-
ing a message from a replicated function receives a repli-
cated message from each replica of said replicated function,

US 2023/0089528 Al

and wherein replicated messages are collected by the receiv-
ing function and compressed to appear as a single message
applying a defined criterion, wherein said defined criterion
is for example
[0125] selecting the highest priority replica among a
defined priority of preference for said replicated mes-
sages, or
[0126] implementing a voting mechanism among said
replicated messages, or
[0127] selecting one among said replicated messages
based on the reception order, for example the first one.
[0128] It may be provided that if the transition definition
of' a mode-transition definition does not require configura-
tion changes to one or more so-called “unaffected” process-
ing cores of said set of processing cores in the system, the
fourth functions of said unaffected processing cores are
excluded from said mode-transition, for example by not
participating in the exchange of any of said messages, m0 .
. m10-messages, with the related third functions in the
related host.
[0129] In this case, the fourth functions of said unaffected
processing cores do not need to apply any configuration
changes to said processing cores, for example if the list of
software components of the old and new mode are identical
for the related processing core none of the specific actions in
the list of specific actions of said transition-definition relates
to said processing cores, so that these fourth functions are
excluded from the specific mode transition.
[0130] It may be provided that if the transition definition
of' a mode-transition definition does not require configura-
tion changes to one or more so-called “unaffected hosts” of
said set of hosts in the system, so that said third functions are
excluded from said mode-transition, for example by not
participating in the exchange of any of said messages, m0 .
. . m10-messages, with the related second functions in said
computer system.
[0131] All of the fourth functions of the processing cores
in said unaffected hosts do not need to apply any configu-
ration changes to said processing cores, for example if the
list of software components of the old and new mode are
identical for all the related processing cores and none of the
specific actions in the list of specific actions of said transi-
tion-definition relates to said processing cores.
[0132] It may be provided that said first, second, third,
and/or fourth functions are implemented in software com-
ponents, for example with an individual software component
for each function, as part of an already existing software
component, or in a software component implementing all
said functions related to a processing core, wherein said
software components are included in the set of software
components in the computer system, and wherein at least
one or more of said software components are included in the
set of software components for each transition definition in
said computer system.
[0133] It may be provided that said first, second, third,
and/or fourth functions are implemented as one or more
operating system services, software libraries, middleware, or
hypervisor services and/or said first, second, third, and/or
fourth functions are implemented as hardware, for example
in an FPGA or ASIC component in said computer system, or
firmware, for example as an embedded program for a
micro-controller in said computer system.
[0134] It may be provided that at least one, or more, of
said messages, m0 . . . m10-messages, are transmitted by

Mar. 23, 2023

means of inter-host communication, like on-chip or off-chip
network, or by means of intra-host communication mecha-
nisms, like IPC (inter-process communication) if the com-
puter system is a POSIX computer systems, or RTE com-
munication (Run-Time Environment communication) if the
computer system is an AUTOSAR computer systems.

[0135] It may be provided that said computer system
additionally comprises a communication network, wherein
said communication network comprises end nodes and/or
starcouplers, like bridges, switches, or routers, and/or com-
munication buses, and wherein each of said one or more
hosts in said computer system is comprised in one of said
end nodes or starcouplers, and wherein said communication
network is configured to transport said messages, mO . . .
m10 messages, between the respective sender and receivers
of said functions, and wherein said configuration of said
communication network comprises configuration related to
said end nodes and/or starcouplers, and/or communication
buses, and wherein the configuration changes computed by
one or more of said fourth functions include changes to said
configuration of said communication network.
[0136] It may be provided that said communication net-
work is a time-triggered communication network, wherein
said modifications of said configuration of said time-trig-
gered communication network are based on
[0137] a precomputed offline time-triggered communi-
cation schedule, wherein all or a subset of the commu-
nications between the software components of said new
mode are included, or
[0138] an online computed time-triggered communica-
tion schedule, wherein all or a subset of the commu-
nications between the software components in the set of
software components of said new mode are included, or
[0139] either a precomputed or online generated incre-
mental time-triggered communication schedule,
wherein said incremental time-triggered schedule com-
prises the necessary modifications to the actual time-
triggered communication schedule for the communica-
tions between the software components in the set of
software components of said new mode.
[0140] It may be provided that the computer system com-
prises a hypervisor, wherein

[0141] one, or more, of said processing cores in said
computer system is a virtual processing core, and/or
[0142] one, or more, of said hosts in said computer

system is a virtual host, and/or

[0143] part of said communication network is a virtual
network.

[0144] An advantage of the invention with respect to prior
art lies in the distributed nature of the method, wherein a
decision to transition to a new mode is propagated to a
plurality of hosts and processing cores in the automotive
system and executed in a coordinated manner

[0145] Another advantage of the invention with respect to
prior art lies in the deterministic behavior of the method,
wherein the definition of modes and mode transitions of the
method allows the offline computation of worst-case tran-
sition times, and therefore include these times in system
safety and timing analysis.

[0146] Another advantage of the invention with respect to
prior art lies in the possibility to check the timely behavior
of a transition process, wherein the timing information

US 2023/0089528 Al

included in the definition of mode transitions and its worst-
case transition time allows to monitor its correct progression
and detect ill-timed behavior.

[0147] Another advantage of the invention with respect to
prior art lies in the possibility to replicate all, or parts, of the
functions implementing the method, wherein said replica-
tion of functions may increase the safety compliance of the
automotive system.

[0148] Another advantage of the invention with respect to
prior art lies in the possibility to limit the processing and
communication overhead by excluding processing cores,
and/or hosts, of the automotive system from the mode
transition process, when the configuration of said processing
cores, and/or said hosts, are not affected by said mode
transition.

[0149] Another advantage of the invention with respect to
prior art lies in the freedom to implement said functions as
one or more operating system services, as software libraries,
as middleware, or as hypervisor services, wherein said
function implementation may be fully or partially done in
software, hardware, or firmware, or a mix of those.

BRIEF DESCRIPTION OF FIGURES

[0150] Inthe following, in order to further demonstrate the
present invention, illustrative and non-restrictive embodi-
ments are discussed, as shown in the drawings. In the
drawings

[0151] FIG. 1 depicts an example workflow of a first
function according to the invention,

[0152] FIG. 2 depicts an example workflow of a second
function according to the invention,

[0153] FIG. 3 depicts an example workflow of a third
function according to the invention,

[0154] FIG. 4 depicts an example workflow of a fourth
function according to the invention,

[0155] FIG. 5 an example of modes and mode transitions,
and
[0156] FIG. 6 an example of an automotive computer

system implementing a method according to the invention.

DETAILED DESCRIPTION

[0157] In the following a method and a computer system
implementing the method according to the invention is
described based on an example which is not limiting the
scope of protection of the invention.

[0158] The invention relates to a method to transition
between an old mode and a new mode of a set of defined
modes in a computer system, in particular in an automotive
computer system (in the following the terms computer
system, automotive computer system and automotive system
will be used synonymously), wherein each of said modes
defines a set of one or more software components of a set of
defined software components, and wherein said set of one or
more software components of said new mode is executed in
said automotive computer system when said transition to
said new mode is executed,

[0159] The method takes as input
[0160] a characterization of the automotive system,
[0161] a set of software components, which may be

executed in the automotive system,
[0162] a set of mode definitions,
[0163] a set of mode transition definitions.

Mar. 23, 2023

Automotive System

[0164] The invention relates to an automotive computer
system characterized as a computer system comprising one
or more hosts, wherein each host comprises one or multiple
processing cores, and wherein said processing cores are
configured to run one or more software components of a set
of defined software components. The set of hosts in the
automotive computer system may include general purpose
processing units, CPU, or dedicated processing units, like
graphical processing units, GPU, or deep neural network,
DNN, engines. Additionally, the automotive computer sys-
tem may comprise other hardware components, like
memory, storage units, or networking interfaces, as well as
FPGA or ASIC components, partly or fully implementing
one or more of the functionalities provided by said software
components.

[0165] The computer system may allow the exchange of
messages between software components via inter-host com-
munication mechanisms, for example IPC (inter-process
communication) if the computer system is a POSIX com-
puter systems, or RTE communication (Run-Time Environ-
ment communication) if the computer system is an
AUTOSAR computer systems.

[0166] It may be provided that the automotive computer
system additionally comprises one or more communication
networks, for example time-triggered communication net-
works, wherein said communication networks comprise end
nodes and/or starcouplers, like bridges, switches, or routers,
and/or communication buses. It may also be provided that
two, more, or all of said hosts in said automotive computer
system are an end node in said communication network, and
that said communication network is configured to transport
messages between a sender node and one or more receiver
nodes, for example directly via said communication buses,
or for example via one or more of said starcouplers.

[0167] The computer system may provide a so called
bare-metal environment for the execution of software com-
ponents, or the computer system may provide an operating
system, for example a POSIX compliant operating system,
and/or a software service platform, like the AUTOSAR
classic or Adaptive AUTOSAR platforms. Operating sys-
tems and software platforms may provide services to soft-
ware components, typically in the form of system calls,
which abstract software operations, for example those
related to the interaction with hardware components, like
memory, storage devices, or other input/output interfaces.

[0168] It may be provided that a plurality of operating
systems and/or software platforms are provided in the auto-
motive computer system, wherein each host may provide
one or multiple operating systems and/or one or multiple
software platforms and/or provide a bare-metal environ-
ment.

[0169] The computer system may additionally comprise
virtualization mechanisms abstracting hardware resources,
like hosts, processing cores, and network components. Vir-
tualization mechanisms are typically implemented using a
mixture of hardware and software, or purely in software, and
they provide a virtual environment, or virtual machine,
wherein software components may execute in similar con-
ditions as if they would execute directly running in the
abstracted hardware components. Virtual machines may
emulate computer systems comprising components, like
hosts and processing cores, differing in number and/or

US 2023/0089528 Al

characteristics from those present in the original hardware
components. Typical virtualization mechanisms are hyper-
visors and containers.

[0170] It may be provided that the automotive computer
system comprises a virtualization layer, or hypervisor,
wherein said virtualization layer is implemented in hardware
and/or software, whereby one, or more, of said processing
cores in said computer system is a virtual processing core,
and/or one, or more, of said hosts in said computer system
is a virtual host, and/or part, or all, of said communication
network is a virtual network.

Mode Definition

[0171] A mode is characterized by a so-called mode
definition, comprising information describing the software
components that are active when the mode is selected. Said
information includes
[0172] a unique mode identifier, MODE ID, for
example an index in a defined table of modes, or a
memory pointer, or a unique name identifying the
mode, or the result of a hash function, or an arbitrary
reference globally and unambiguously identify the
mode, and
[0173] a set of references to software components from
the set of defined software components, wherein when
a mode is active, all listed software components of said
mode are running in one or more processing cores of
the set of processing cores of the computer system.

Mode Transition Definition

[0174] The invention relates to a multi-mode automotive
computer system wherein (exactly) one mode, the active
mode, may be active at any given time, and wherein switch-
ing to a new mode implies de-activating the current active
mode and activating the new future mode. This transitions
between any two modes may or may not be allowed depend-
ing on a defined set of mode transition definitions, wherein
for each allowed mode transition a transition definition is

provided.
[0175] A transition definition comprises information
including

[0176] a reference to the initial mode, which is the

active mode before applying the transition,

[0177] a future mode, to which will be the active mode
after applying the transition,

[0178] a list of specific actions, which need to be
executed during the transition to perform the transition
from the set of software components in the past active
mode to the set of software components in the future
active mode.

List of Specific Actions

[0179] The invention relates to a method wherein a list of
specific actions in a mode transition definition comprises
information of necessary steps that need to be executed to
fulfill said transition. The concrete specific actions may
depend on specific characteristics of the automotive com-
puter system, like the number of hosts and cores, the number
and type of hardware resources, like memory, storage units,
or input/output interfaces, and may include the following
actions
[0180] de-initialize a software component of the set of
software components in the current, old, mode, and/or

Mar. 23, 2023

[0181] wun-register resources, like memory, hardware
devices, or software services, not anymore required in
the future, new, mode, and/or

[0182] initialize a software component of the set of
software components in the new mode,

[0183] register resources, like memory, hardware
devices, or software services, required by software
components in the new mode, and/or

[0184] (re)configure the runtime system of one or mul-
tiple processing cores to execute the set of software
components in the new mode, and/or

[0185] (re)configure software services like error han-
dlers, monitoring systems, watchdogs, and/or middle-
ware, to the new set of software components in the new
mode,

[0186] wherein each specific action may comprise instruc-
tions, including system calls provided by an operating
system or the software platform, hyper-calls provided by a
hypervisor, and/or instructions to directly operate on bare-
metal, which need to be executed in one or multiple of said
hosts to perform the defined action.

[0187] Furthermore, each action in said list of specific
actions may additionally comprise

[0188] a defined time-budget for said action to be
completed during runtime,

[0189] wherein said defined time-budget allows analyzing
offline the worst-case time to execute said mode transition as
well as monitoring at run-time the timely progression of the
defined actions.

[0190] Furthermore, said transition definition may addi-
tionally comprise

[0191] one or more optional points in time, relative to
the runtime of the software components in the old
mode, when the mode-transition may be initiated,

[0192] wherein the point in time when the mode transition
may be initiated may be calculated offline or at runtime
based on the planning of the execution of software compo-
nents, for example based on a time-triggered schedule, or
defined properties of the set of software components, like the
hyperperiod of periodic software components.

[0193] It may be provided that said set of transition
definitions are available to all processing cores in said set of
processing cores, for example by either

[0194] storing a full or partial copy in a memory space
related to each processing core in the set of processing
cores, or

[0195] storing a full or partial copy in a memory space
related to each host in the set of hosts, said memory
space being accessible among all processing cores
related to said host, or

[0196] storing a full or partial copy in a central memory
space, whereby access to said memory space is possible
from all processing cores in the set of processing cores,
or

[0197] encoding said set of transition definitions with
instructions in all, or a subset, of the hosts and pro-
cessing cores, whereby said instructions are sufficient
to extract the information of said set of transition
definitions and make it available to all processing cores
in the set of processing cores.

First, Second, Third, Fourth Functions

[0198] The invention relates to a method providing func-
tions, including first, second, third, and fourth functions,

US 2023/0089528 Al

running on one or more processing cores of the computer
system, to execute the mode transition at runtime, wherein
said first, second, third, and fourth functions communicate
via the exchange of messages, m0- to ml0-messages,
wherein said messages may provide a positive type and a
negative type, m3- to ml0-messages, or may provide a
single positive type, m0- to m2-messages, as summarized in
Table 1.

TABLE 1

Summary of messages and their types

Message Type (positive) Type (negative)

mO-message REQUEST N/A

ml-message REQUEST N/A

m2-message REQUEST N/A

m3-message POSITIVE NEGATIVE
ACKNOWLEDGMENT ACKNOWLEDGMENT
(PACK) (NACK)

m4-message POSITIVE NEGATIVE
ACKNOWLEDGMENT ACKNOWLEDGMENT
(PACK) (NACK)

mb5-message PREPARE REJECT

moé6-message PREPARE REJECT

m7-message READY REJECT

m8-message READY REJECT

m9-message ACTIVATE REJECT

m10-message ACTIVATE REJECT

[0199] First functions, customModeHandler, may receive
a request to execute a transition from a current mode to a
new mode, for example by means of a human-machine
interface, or as a result of an automated algorithm, as
illustrated in the example workflow depicted in FIG. 1. After
receiving said request, said first function selects the corre-
sponding transition definition of the set of transition defi-
nitions and computes a point in time when said mode shall
become active, for example by computing a point in time
based on
[0200] one of said defined optional points in time in the
transition definition, or
[0201] a globally defined relative point in time for the
initiation of the transition, like a point in time at the end
of a schedule cycle (hypercycle), or a point in time at
the end of a predefined interval, or
[0202] the immediately next possible point in time after
the reception of said request, or
[0203] a point in time according to a defined static
assignment of transition points in time, for example, a
timetable, or
[0204] the result of a dynamic algorithm assessing the
current runtime status of the system, including safety
considerations, operational metrics, and/or historical
data, or
[0205] apoint in time optionally received alongside said
request to execute a transition.
[0206] The transition request and computed point in time
is then communicated to second functions, with the trans-
mission of an m0-message.
[0207] It may be provided that first functions after sending
said request additionally perform a check to confirm whether
the transition has been successful and perform mitigation
actions if not, for example report an error.
[0208] Second functions, ModeSwitchManager, may
receive a request to execute a transition from a current mode
to a new mode from said first functions via the reception of

Mar. 23, 2023

an mO-message, as illustrated in the workflow depicted in
FIG. 2, wherein an m0-message comprises

[0209] a reference to the new mode, and
[0210] the computed activation point in time,
[0211] wherein, after receiving the mO-message, the sec-

ond functions propagate the information of said m0-message
to third functions via m1-messages.

[0212] It may be provided that second functions after
sending the ml-messages to the third functions, wait for
m4-messages (m4_1 . . . m4_n) from the third functions
running on each host, and after receiving said m4-messages
communicate a mS-message to said third functions, and
wherein,

[0213] if (a) said m4-messages (m4_1 . . . m4_n)
comprise a message of each host, and (b) each of said
m4-messages (m4_1 . . . m4_n) is a POSITIVE
ACKNOWLEDGMENT message, said m5-message is
a PREPARE message, and subsequently,

[0214] (i) said second function waits for messages, the
so-called m8-message (m8_i), from the third functions
running on each host (host_i), and, after receiving
m8-messages from said third functions, communicate a
new message, a so-called m9-message (m9), to said
third functions, wherein
[0215] (i.1) if said m8-messages (m8_1 . . . m8_n)

comprise an m8-message of each third function, and
if all said m8-messages are READY messages, said
m9-message is a ACTIVATE message, or otherwise

[0216] (i.2) said m9-message is a REJECT message,
[0217] or
[0218] otherwise, if (a) and/or (b) are not fulfilled, said

m5-message is a REJECT message and the mode
transition is terminated without performing configura-
tion changes.
[0219] Third functions, ModeSwitchExecutor, may
receive a request to execute a transition from a current mode
to a new mode from said second functions via the reception
of'an m1-message, as illustrated in the workflow depicted in
FIG. 3. An ml-message comprises
[0220] the received reference to the new mode, and
[0221] the activation point in time in the future of the
new mode,
[0222] and wherein, after receiving the m1-message, the
second functions propagate the information of said m1-mes-
sage to fourth functions via m2-messages.
[0223] It may be provided that third functions, addition-
ally wait for m3-messages (m3_1 . . . m3_n) from their
corresponding fourth functions running on each processing
core, and, after receiving said m3-messages from their
corresponding fourth functions communicate a new mes-
sage, the so-called m4-message, to the second function,
which is the source of the m1-message, and wherein
[0224] said m4-message is a NEGATIVE ACKNOWL-
EDGMENT message, if at least one of said m3-mes-
sages is a NEGATIVE ACKNOWLEDGMENT mes-
sage, and said third function finishes the mode
transition without executing configuration changes, or
[0225] said m4-message is a POSITIVE ACKNOWL-
EDGMENT message, if all said m3-messages are
POSITIVE ACKNOWLEDGMENT messages, and
subsequently
[0226] (i) said third functions wait for a message, the
so-called m5-message, from the second function and

US 2023/0089528 Al

propagate said m5-message or the content of said
m5-message to its fourth functions, via the so called
m6-message, and
[0227] (i.1) if said m5-message is a REJECT mes-
sage, said m6-message is a REJECT message, and
said third function finishes the mode transition
without executing configuration changes, or
[0228] (i.2) if said m5-message is a PREPARE
message, said m6-message is a PREPARE mes-
sage, and subsequently executes the steps of:
[0229] (ii)) waiting for messages, the so-called
m7-messages (m7_1 . . . m7_n) from the fourth
functions running on each related processing core
and subsequently communicate a new message, the
so-called m8-message, to the second function, which
is the source of the m5-message, and
[0230] (ii.1) if any of said m7-messages is a
REJECT message, said m8-message is a REJECT
message, and said third function finishes the mode

transition without executing configuration
changes, or
[0231] (ii.2) if said m7-messages are all READY

messages, said m8-message is a READY message,
and executes the steps of:

[0232] (iii) wait for a message, the so-called m9-mes-
sage, from the second function, and after receiving
said m9-message propagate said m9-message or the
content of said m9-message to the fourth functions
with a message, the so-called m10-message, and
[0233] (iii.]1) if said m9-message is an ACTIVATE

message, said m10-messages are ACTIVATE mes-
sages, or
[0234] (iii.2) if said m9-message is a REJECT
message, said m10-messages are REJECT mes-
sages, and said third function finishes the mode
transition without executing configuration
changes.
[0235] Fourth functions, ModeSwitchExecutor, may
receive a request to execute a transition from a current mode
to a new mode from said third functions via the reception of
an m2-message, as illustrated in the workflow depicted in
FIG. 4, wherein and m2-message comprises
[0236] the received reference to the new mode, and
[0237] the activation point in time in the future of the
new mode,
[0238] and wherein, after receiving the m2-message,
fourth functions compute the necessary changes in the
configuration of the processing core on which said fourth
function are running, so that the software components,
which have to run on the processing core according to the
new mode can be activated, and wherein said changes in the
configuration comprise
[0239] a list of specific actions according to said tran-
sition definition, and
[0240] a time-budget for each of said defined specific
action, and

[0241] the current runtime state of the processing core,
and
[0242] the characteristics of the runtime system of the

processing core, like its operating system, scheduling
policy or task dispatching mechanism, hypervisor or
virtualization layers, or characteristics related to the
runtime configuration of software components and
resources.

Mar. 23, 2023

[0243] It may be provided that fourth functions execute at
the activation point in time said changes in the configuration,
so that the new mode is activated, or
[0244] It may be provided that fourth functions after
receiving the m2 message from the third function, addition-
ally performs local checks on its processing core to assess if
the configuration changes on the processing core configu-
ration according to the new mode can be performed, in
particular
[0245] safely performed, for example in compliance
with safety functional requirements, and/or
[0246] timely performed, for example with consider-
ation to said computed time and/or said defined time-
budget for said list of specific actions, and
[0247] sends a so-called m3 message to the third function
which is the source of the m2 message, wherein each
particular fourth function sends the m3 message to the third
function sourcing said m2 message, wherein
[0248] said m3 message is a NEGATIVE ACKNOWL-

EDGMENT message, if the changes cannot be per-

formed, and said fourth function finishes the mode

transition without performing configuration changes,

[0249] or

[0250] said m3 message is a POSITIVE ACKNOWL-
EDGMENT message if the changes can be performed,
and subsequently

[0251] (2) in the case that the m3 message is a POSI-

TIVE ACKNOWLEDGMENT message, said fourth

functions wait for the reception of a follow up message,

the so-called m6-message, from said third functions,
wherein

[0252] if said received m6-message is a PREPARE
message, said fourth functions execute the following
steps:

[0253] (i) computing the necessary changes on the
processing core configuration of the processing core
on which the fourth function is running, so that the
software components of the new mode can be acti-
vated when said configuration is applied, and sub-
sequently

[0254] (ii) sending a message, the so-called m7-mes-
sage, to the third function which is the source of the
m6-message, wherein
[0255] (ii.1) said m7-message is a READY mes-

sage indicating the readiness of said fourth func-
tion to apply said configuration changes of the
processing core, and subsequently

[0256] (iii) waiting for the reception of a follow up
messages, the so-called m10-message, from said
third function, wherein

[0257] (iv) if said m10-message is an ACTIVATION
message, activating said configuration changes and
finalize said mode change transition, or

[0258] (v) if said m10-message is a REJECT mes-
sage, finalize said mode change transition without
applying said configuration changes,

[0259] or
[0260] (ii.2) said m7-message is a REJECT mes-

sage indicating said fourth function cannot apply
said configuration changes of the processing core,
so that said fourth function finishes the mode
transition without executing configuration
changes,

US 2023/0089528 Al

[0261] or
[0262] if said m6-message is a REJECT message, final-
izes the mode transition without executing any con-
figuration changes.
[0263] It may be provided that the first function is running
on a host of the hosts of the computer system.
[0264] It may be provided that the second function are
running on a processing core of the hosts in the computer
system. In particular, on each host of the computer system
or at least on each host which is or may be involved in a
mode transition a second function is running, namely on a
processing core of each said host.
[0265] With respect to the third functions, the situation is
the same as with the second functions.
[0266] It may be provided with respect to the fourth
functions on each processing core of each host of the
computer system or at least on each host which is or may be
involved in a mode transition a fourth function is running.

Example

[0267] In the following a method according to the inven-
tion is described using an example based on an automotive
computer system depicted in FIG. 6, comprising two hosts,
so-called “host H1” 200, and so-called “host H2” 300,
wherein host H1 comprises a processing core, “core C1”
210, a network interface (“NIC1”) 220, and a graphical
processing unit (“GPU1”) 230. Host H2 comprises a pro-
cessing core (“C2”) 310, a network interface (“NIC2”) 320,
and another processing core (“C3”) 330. Furthermore, the
automotive computer system comprises a network switch
400 connecting hosts H1 and H2.

[0268] In this example it may be provided in the automo-
tive computer system an operating system, “OS”, and a
software platform, “SP”, run in all of said hosts and all of
said processing cores.

[0269] The example relates to a scenario depicted in FIG.
5, comprising five software components SWC1, SWC2,
SWC3, SWC4, and SWCS5, and three modes MODE A, 100,
MODE B, 120, and MODE C, 140, as illustrated in Table 2.

TABLE 2

Example list mode definitions
Mode Definition

Mode ID MODE A MODE B MODE C
List of Software swcel swcel swc1
Components SWC2 SWC2 SWC2
SWCS SWC3 SWC4
SWCS SWCS
[0270] According to the example it is provided that

[0271] software component SWC1 is configured to run
in processing core C1 of host H1 and utilize network
interface NIC1,

[0272] software component SWC2 is configured to run
in processing core C2 of host H2 and utilize network
interface NIC2,

[0273] software component SWC3 is configured to run
in processing core C1 of host H1 and utilize graphical
processing unit GPU1,

[0274] software component SWC3 is configured to run
in processing core C2 of host H2.

Mar. 23, 2023

[0275] software component SWC4 is configured to run
in processing core C2 of host H2, software component
SWCS is configured to run in processing core C3 of
host H2.

[0276] The example relates to a simple scenario in which
two software components, SWC1 and SWC2, perform a
coordinated task requiring communication, for example a
trajectory planning function realized with software compo-
nent SWC2, requiring data from a GPS-based positioning
function realized with software component SWCI, and
wherein software components SWC3 and SWC4 are alter-
native implementations of the same functions, for example
atrajectory rendering function, wherein software component
SWC3 requires hardware support from GPU1 for rendering
purposes, whereas software component SWC4 performs
rendering without hardware support, allowing, for example,
energy saving when high performance rendering is not
needed. Software component SWCS may perform monitor-
ing and diagnosis tasks.

[0277] The example also relates to four defined transi-
tions, transition AB, 110, transition BC, 130, transition CB,
150, and transition CA, 160, illustrated in Table 3.

TABLE 3

Example mode transition definitions

Mode Transition T-AB T-BC T-CB T-CA

Initial mode MODE A MODE B MODE C MODE C

Future mode MODE B MODE C MODE B MODE A
List of actions Al A2 A4 AS
A3
Points in time T1 T1 T1 T1
[0278] The specific actions listed on each transition defi-

nition in Table 3 correspond to the following:

[0279] Al: initialize SWC3, register GPU1

[0280] A2: deinitialize SWC3, unregister GPU1

[0281] A3: initialize SWC4

[0282] A4: initialize SWC3, register GPU1

[0283] AS: deinitialize SWC4

[0284] AG6: deinitialize SWC4
[0285] wherein each specific action above may addition-
ally comprise instructions necessary to perform said action
when executed in one of the processing cores of said
automotive computer system, wherein said instructions
depend on implementation choices, like the selection of
programming language, or software libraries, the character-
istics of the processing core for which they are coded, like
the CPU family, or the compiler used to compile a high level
programming language, like C or C++, or the interpreter of
an interpreted language, like Python.
[0286] According to the example the first function and the
second function are permanently running on processing core
C1 in host H1, and the third and fourth functions perma-
nently run on processing cores C1 in host H1 and C2 in host
H2.
[0287] It may be provided that a scenario like the one
described above takes as initial configuration an automotive
computer system as described, wherein the active mode is
MODE A, and wherein said first function running in pro-
cessing core C1 is configured to detect a input, for example,
the selection of an entry in a menu on a touch screen,
wherein said entry allows activating a trajectory planning
function, causing said first function to send a request to said

US 2023/0089528 Al

second function to transition to mode MODE B, via an
mO-message, wherein the type of said mO-message is
REQUEST, and wherein the reference to MODE B and the
optional activation point in time T1 are provided, following
the workflow depicted in FIG. 1.

[0288] It may be provided that the second function run-
ning on processing core C1 of host H1 receives said
mO-message and propagates the request to third functions, in
particular to a third function running on processing core C1
ot host H1 and to a third function running on processing core
C2 of host H2, via a m1-message, wherein the type of said
ml-message is REQUEST, and wherein the reference to
MODE B and the optional activation point in time T1 are
provided, following the workflow depicted in FIG. 2.
[0289] It may be provided that third functions running on
processing core C1 and processing core C2 receive said
ml-message and propagates the request to fourth functions,
in particular to a fourth function running on each of the
processing cores Cl, C2, and C3, via a m2-message,
wherein the type of said m2-message is REQUEST, and
wherein the reference to MODE B and the optional activa-
tion point in time T1 are provided, following the workflow
depicted in FIG. 3.

[0290] It may be provided that fourth functions running on
processing cores C1, C2, and C3, receive said m2-message
and compute the changes in the configuration of the pro-
cessing cores so that the software components which have to
run in the new mode, MODE B, can be activated, wherein
said computation is based on the current active mode,
MODE A, and wherein said computation is additionally
based on the specific actions in the mode transition defini-
tion T-AB, and wherein said computation computes the
necessary instructions to perform said necessary changes
based on the characteristics of the operating system, OS, and
the software platform SP, and wherein

[0291] the fourth function running in processing core
C1 computes necessary changes, wherein said changes
comprise
[0292] initialize SWC3, register GPU1,

[0293] with a computed time-budget, B1,

[0294] the fourth function running in processing core
C2 computes necessary changes, wherein said changes
comprise
[0295] no changes required,

[0296] with a computed time-budget 0,

[0297] the fourth function running in processing core
C3 computes necessary changes, wherein said changes
comprise
[0298] no changes required,

[0299] with a computed time-budget 0,
[0300] and wherein each said fourth function execute said
computed changes, including said computed instructions, at
the activation point in time T1, wherein said execution is
completed no later than the point in time T1+B1.

That which is claimed is:

1. A method to execute a mode-transition in a multi-mode
computer system comprising a multi-mode automotive com-
puter system from a current mode to a future mode of a set
of defined modes during run-time of the computer system,
the method comprising:

running said computer system in a current, active mode,
and wherein

said computer system comprises a set of two or more
processing cores, and wherein

Mar. 23, 2023

said computer system comprises one host, which host
comprises said set of processing cores, or wherein
said computer system comprises two or more hosts,
wherein each of said hosts comprises one or more of
said set of processing cores,
and wherein
each processing core in said set of processing cores is
configured to run one or more software components of
a set of defined software components, and wherein
a set of two or more modes is provided,
wherein
each mode of said set of modes comprises
a unique mode identifier, MODE ID, comprising an
index in a defined table of modes, or a memory
pointer, or a unique name identifying the mode, or
the result of a hash function, or an arbitrary reference
globally and unambiguously identify the mode, and
a set of references to software components from the set
of defined software components, wherein when a
mode is active, all listed software components of
said mode are running in one or more processing
cores of the set of processing cores of the computer
system,
and wherein
only one mode from the defined set of modes can be
active in said computer system at a time, and wherein
the mode-transition, that is the transition from the current,
active mode to a future defined mode, is executed at
runtime, during operation, of the computer system,
wherein
a mode-transition is determined by a transition definition,
wherein for each allowed mode-transition a transition
definition is provided, wherein all transition definitions
form a set of transition definitions, and wherein a
transition definition between two defined modes com-
prises
a reference to the initial mode
a reference to the future mode
a list of specific actions to be executed during the
mode-transition, wherein
said list of specific actions comprises information of
necessary steps to execute said mode-transition, com-
prising:
de-initialize a software component of the set of soft-
ware components in the current, old, mode, and/or
un-register resources, like memory, hardware devices,
or software services, not anymore required in the
future, new, mode, and/or
initialize a software component of the set of software
components in the new mode,
register resources, like memory, hardware devices, or
software services, required by software components
in the new mode, and/or
(re)configure the runtime system of one or multiple
processing cores to run the set of software compo-
nents in the new mode, and/or
reconfigure software services like error handlers, moni-
toring systems, watchdogs, and/or middleware, to
the new set of software components in the new
mode,
wherein each specific action may comprise instructions,
including system calls provided by an operating system
or the software platform, hyper-calls provided by a
hypervisor, and/or instructions to directly operate on

US 2023/0089528 Al

bare-metal, which need to be executed in one or mul-
tiple of said hosts to perform the defined action,
and wherein each action in said list of specific actions
comprise
a defined time-budget for said action to be completed
during runtime, and
wherein, said transition definition comprises
one or more optional points in time, relative to the
runtime of the software components in the old mode,
when the mode-transition can be initiated,
and wherein said set of transition definitions and said set
of modes are available to all processing cores in said set
of processing cores by either
storing a full or partial copy in a memory space related
to each processing core in the set of processing cores,
or
storing a full or partial copy in a memory space related
to each host in the set of hosts, said memory space
being accessible among all processing cores related
to said host, or
storing a full or partial copy in a central memory space,
whereby access to said memory space is possible
from all processing cores in the set of processing
cores, or
encoding said set of transition definitions with instruc-
tions in all, or a subset, of the hosts and processing
cores, whereby said instructions are sufficient to
extract the information of said set of transition
definitions and make it available to all processing
cores in the set of processing cores,
wherein
(1) a first function, the so-called function “CustomMod-
eHandler”, is provided, which first function is running
on a host of the hosts of the computer system, wherein
said first function
(a) receives a request to execute a transition from a
current, active mode to a defined future mode, the
“new” mode by means of a human-machine interface
or as a result of an automated algorithm, and
(b) after receiving said request selects the transition
definition from said set of transition definitions for
said mode-transition, said transition definition defin-
ing the mode-transition from the actual active mode
to the future, new mode, and wherein
said first function computes, based on said transition
definition, a point in time in the future, the “activation
point in time”, at which activation point in time said
new mode shall become active, and wherein said com-
putation takes into account
one of said optional points in time in the transition
definition, or
a globally defined relative point in time for the initia-
tion of the transition, like a point in time at the end
of a schedule cycle (hypercycle), or a point in time
at the end of a predefined interval, or
the immediately next possible point in time after the
reception of said request, or
a point in time according to a defined static assignment
of transition points in time comprising a timetable, or
the result of a dynamic algorithm assessing the current
runtime status of the system, including safety con-
siderations, operational metrics, and/or historical
data, or

Mar. 23, 2023

a point in time optionally received alongside said
request to execute a transition,

(2) a second function, the so-called function “Mod-
eSwitchManager”, is running on a processing core of
the hosts in the computer system,

and wherein the first function transmits a message, the
so-called mO-message, to said second function,
wherein

said m0-message comprises
a reference to the new mode, and
the computed activation point in time,

(3) third functions, the so-called “ModeSwitchExecutor”
functions, are provided, wherein a third function is
running on a processing core in each of the hosts of the
computer system,

and wherein the second function, after receiving the
mO-message, propagates the information of said
mO-message via messages, the so-called m1-messages,
to third functions or to each of said third functions,
wherein each ml-message is a MODE REQUEST
message comprising
the received reference to the new mode, and
the activation point in time in the future of the new

mode,

and wherein

third functions receive an m1-message requesting a mode-
transition in the processing cores of its related hosts,
wherein

(4) fourth functions, the “Scheduler” functions, are pro-
vided, wherein on each processing core of the computer
system a fourth function is running, and wherein

third functions, after receiving the m1-message, distribute
the information of said m1-message to fourth functions
running on a processing core comprised in the host
related to said third functions via a message or mes-
sages, the so-called m2-message(s), wherein each
m2-message is a REQUEST message including
the received reference to the new mode
as well as the activation point time for the new mode,

and wherein
fourth functions extract, after receiving an m2-message,
the reference to the new mode and the activation point
in time from the received m2-messages and compute
the necessary changes in the configuration of the pro-
cessing core in which said fourth function is running, so
that the software components, which have to run on the
processing core according to the new mode can be
activated, and wherein
said computation of changes in the configuration is based
on
the current runtime state of the processing core, and
the characteristics of the runtime system of the pro-
cessing core, like its operating system, scheduling
policy or task dispatching mechanism, hypervisor or
virtualization layers, or characteristics related to the
runtime configuration of software components and
resources, and

the new and old modes,

and wherein said computed changes in the configuration
comprise
the execution of a list of specific actions according to

said transition definition, and
the time-budget for each of said defined specific action,
and

US 2023/0089528 Al

and wherein
said fourth functions execute at the activation point in
time said changes in the configuration, so that the new
mode is activated.
2. The method according to claim 1, wherein
(1) each fourth function, after receiving the m2 message
from the third function, additionally performs local
checks on its processing core to assess if the configu-
ration changes on the processing core configuration
according to the new mode can be performed:
safely performed in compliance with safety functional
requirements, and/or
timely performed with consideration to said computed
time and/or said defined time-budget for said list of
specific actions, and
sends a so-called m3 message to the third function which
is the source of the m2 message, wherein each fourth
function sends the m3 message to the third function
sourcing said m2 message, wherein
said m3 message is a NEGATIVE ACKNOWLEDG-
MENT message, if the changes cannot be performed,
and said fourth function finishes the mode transition
without performing configuration changes,
or

said m3 message is a POSITIVE ACKNOWLEDGMENT
message if the changes can be performed, and subse-
quently

(2) in the case that the m3 message is a POSITIVE
ACKNOWLEDGMENT message, said fourth func-
tions wait for the reception of a follow up message, the
so-called m6-message, from said third functions,
wherein

if said received m6-message is a PREPARE message, said
fourth functions execute the following steps:

(1) computing the necessary changes on the processing
core configuration of the processing core on which
the fourth function is running, so that the software
components of the new mode can be activated when
said configuration is applied, and subsequently

(i1) sending a message, the so-called m7-message, to
the third function which is the source of the m6-mes-
sage, wherein
(ii.1) said m7-message is a READY message indi-

cating the readiness of said fourth function to
apply said configuration changes of the processing
core, and subsequently

(iii) waiting for the reception of a follow up messages,
the so-called m10-message, from said third function,
wherein

(iv) if said m10-message is an ACTIVATION message,
activating said configuration changes and finalize
said mode change transition, or

(v) if said m10-message is a REJECT message, finalize
said mode change transition without applying said
configuration changes,

or

(11.2) said m7-message is a REJECT message indi-
cating said fourth function cannot apply said con-
figuration changes of the processing core, so that
said fourth function finishes the mode transition
without executing configuration changes,

Mar. 23, 2023

or

if said m6-message is a REJECT message, finalizes the
mode transition without executing any configuration
changes,

and wherein

(3) said third functions, after sending the m2-messages to

the fourth functions, wait for m3-messages (m3_1 . . .

m3_n) from their corresponding fourth functions run-

ning on each processing core, and, after receiving said
m3-messages from their corresponding fourth func-
tions communicate a new message, the so-called
m4-message, to the second function, which is the
source of the m1-message, and wherein

said m4-message is a NEGATIVE ACKNOWLEDG-

MENT message, if at least one of said m3-messages is

a NEGATIVE ACKNOWLEDGMENT message, and

said third function finishes the mode transition without

executing configuration changes, or
said m4-message is a POSITIVE ACKNOWLEDG-

MENT message, if all said m3-messages are POSI-

TIVE ACKNOWLEDGMENT messages, and subse-

quently
(1) said third functions wait for a message, the so-called
m5-message, from the second function and propa-
gate said m5-message or the content of said m5-mes-
sage to its fourth functions, via the so called m6-mes-
sage, and
(i.1) if said m5-message is a REJECT message, said
m6-message is a REJECT message, and said third
function finishes the mode transition without
executing configuration changes, or

(1.2) if said m5-message is a PREPARE message,
said m6-message is a PREPARE message, and
subsequently executes the steps of:
(i1) waiting for messages, the so-called m7-messages
(m7_1 ... m7_n) from the fourth functions running
on each related processing core and subsequently
communicate a new message, the so-called m8-mes-
sage, to the second function, which is the source of
the m5-message, and
(1.1) if any of said m7-messages is a REJECT
message, said m8-message is a REJECT message,
and said third function finishes the mode transition
without executing configuration changes, or

(1i.2) if said m7-messages are all READY messages,
said mS8-message is a READY message, and
executes the steps of:

(iii) wait for a message, the so-called m9-message,
from the second function, and after receiving said
m9-message propagate said m9-message or the con-
tent of said m9-message to the fourth functions with
a message, the so-called m10-message, and
(iii.1) if said m9-message is an ACTIVATE message,

said m10-messages are ACTIVATE messages, or
(1ii.2) if said m9-message is a REJECT message, said
ml0-messages are REJECT messages, and said
third function finishes the mode transition without
executing configuration changes,
and wherein
(4) said second function, after sending the m1-messages

to the third functions, waits for m4-messages (m4_1 .

.. m4_n) from the third functions running on each host,

and after receiving said m4-messages communicate a

m5-message to said third functions, and wherein,

US 2023/0089528 Al

if (a) said m4-messages (m4_1 . . . m4_n) comprise a
message of each host, and (b) each of said m4-mes-
sages (m4_1 ...m4_n)is a POSITIVE ACKNOWL-
EDGMENT message, said m5-message is a PRE-
PARE message, and subsequently,

(1) said second function waits for messages, the so-
called m8-message (m8_i), from the third functions
running on each host (host_i), and, after receiving
m8-messages from said third functions, communi-
cate a new message, a so-called m9-message (m9), to
said third functions, wherein
(i.1) if said m8-messages (m8_1 . . . m8_n) comprise

an m8-message of each third function, and if all
said m8-messages are READY messages, said
m9-message is a ACTIVATE message, or other-
wise
(1.2) said m9-message is a REJECT message,
or

otherwise, if (a) and/or (b) are not fulfilled, said
m5-message is a REJECT message and the mode
transition is terminated without performing configu-
ration changes.

3. The method according to claim 1, wherein the configu-
ration changes computed by one or more of said fourth
functions include the modification of a time-triggered sched-
ule comprising a schedule table, wherein said modifications
are based on

a precomputed offline time-triggered schedule, wherein

all software components in the set of software compo-
nents of said new mode are included, or

an online computed time-triggered schedule, wherein all

software components in the set of software components
of said new mode are included, or

either a precomputed or online generated incremental

time-triggered schedule, wherein said incremental
time-triggered schedule comprises a set of necessary
modifications to the actual time-triggered schedule to
adapt to the changes between the set of software
components of said old mode and the sets of software
components of said new mode.

4. The method according to claim 1, wherein said first,
second, third and/or fourth function initiate timeout counters
after sending anyone of said messages m0 . . . m10, and
wherein

said counters are initialized with defined time intervals,

wherein said counters decrease with the progression of
time, and wherein

said first, second, third, and/or fourth functions limit the

waiting time for messages to the time until said counter
timeout expires, and wherein

if no message is received within said timeout interval said

function(s) is(are) terminated without performing con-
figuration changes.

5. The method according to claim 1, wherein at least one,
preferably all functions of the first, second, and third func-
tion are replicated, wherein

each function sending a message to a replicated function

sends a replicated message to each replica of said
replicated function, and wherein

each function receiving a message from a replicated

function receives a replicated message from each rep-
lica of said replicated function, and wherein

Mar. 23, 2023

replicated messages are collected by the receiving func-

tion and compressed to appear as a single message

applying a defined criterion, wherein said defined cri-

terion is

selecting the highest priority replica among a defined
priority of preference for said replicated messages,
or

implementing a voting mechanism among said repli-
cated messages, or

selecting one among said replicated messages based on
the reception order comprising the first one.

6. The method according to claim 1, wherein if the
transition definition of a mode-transition definition does not
require configuration changes to one or more so-called
“unaffected” processing cores of said set of processing cores
in the system, the fourth functions of said unaffected pro-
cessing cores are excluded from said mode-transition by not
participating in the exchange of any of said messages, m0 .
. . m10-messages, with the related third functions in the
related host.

7. The method according to claim 1, wherein if the
transition definition of a mode-transition definition does not
require configuration changes to one or more so-called
“unaffected hosts” of said set of hosts in the system, so that
said third functions are excluded from said mode-transition
by not participating in the exchange of any of said messages,
mO . . . m10-messages, with the related second functions in
said computer system.

8. The method according to claim 1, wherein said first,
second, third, and/or fourth functions are implemented in
software components with an individual software compo-
nent for each function, as part of an already existing soft-
ware component, or in a software component implementing
all said functions related to a processing core, wherein

said software components are included in the set of

software components in the computer system, and
wherein

at least one or more of said software components are

included in the set of software components for each
transition definition in said computer system.

9. The method according to claim 1, wherein said first,
second, third, and/or fourth functions are implemented as
one or more operating system services, software libraries,
middleware, or hypervisor services and/or said first, second,
third, and/or fourth functions are implemented as hardware
in an FPGA or ASIC component in said computer system, or
firmware as an embedded program for a micro-controller in
said computer system.

10. The method according to claim 1, wherein at least one,
or more, of said messages, m0 . . . m10-messages, are
transmitted by means of inter-host communication, like
on-chip or off-chip network, or by means of intra-host
communication mechanisms, like IPC (inter-process com-
munication) if the computer system is a POSIX computer
systems, or RTE communication (Run-Time Environment
communication) if the computer system is an AUTOSAR
computer systems.

11. The method according to claim 1, wherein said
computer system additionally comprises a communication
network, wherein

said communication network comprises end nodes and/or

starcouplers, like bridges, switches, or routers, and/or
communication buses, and wherein

US 2023/0089528 Al

each of said one or more hosts in said computer system is
comprised in one of said end nodes or starcouplers, and
wherein

said communication network is configured to transport

said messages, m0 . . . m10 messages, between the
respective sender and receivers of said functions, and
wherein
said configuration of said communication network com-
prises configuration related to said end nodes and/or
starcouplers, and/or communication buses, and wherein

the configuration changes computed by one or more of
said fourth functions include changes to said configu-
ration of said communication network.

12. The method according to claim 11, wherein said
communication network is a time-triggered communication
network, wherein

said modifications of said configuration of said time-

triggered communication network are based on

a precomputed offline time-triggered communication
schedule, wherein all or a subset of the communi-
cations between the software components of said
new mode are included, or

an online computed time-triggered communication
schedule, wherein all or a subset of the communi-
cations between the software components in the set
of software components of said new mode are
included, or

Mar. 23, 2023

either a precomputed or online generated incremental
time-triggered communication schedule, wherein
said incremental time-triggered schedule comprises
the necessary modifications to the actual time-trig-
gered communication schedule for the communica-
tions between the software components in the set of
software components of said new mode.
13. The method according to claim 1, wherein the com-
puter system comprises a hypervisor, wherein
one, or more, of said processing cores in said computer
system is a virtual processing core, and/or
one, or more, of said hosts in said computer system is a
virtual host, and/or
part of said communication network is a virtual network.
14. A computer system comprising a set of two or more
processing cores, wherein said computer system comprises
one host, which host comprises said set of processing cores,
or wherein said computer system comprises two or more
hosts, wherein each of said hosts comprises one or more of
said set of processing cores, and wherein each processing
core in said set of processing cores is configured to run one
or more software components of a set of defined software
components, and wherein a set of two or more modes is
provided, wherein the computer system is configured to
execute a method according to claim 1.

#* #* #* #* #*

