
SMT-based task- and network-level static
schedule generation for time-triggered
networked systems
Silviu S. Craciunas, Ramon Serna Oliver	

TTTech Computertechnik AG  
RTNS 2014, Versailles, France, October 5-8, 2014

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Time Triggered Networks

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Time triggered communication

communication periods over a multi-speed switched TTEth-
ernet network. We model the CPUs as self-links on the end-
systems and schedule virtual frames (explained below) rep-
resenting non-preemptable chunks of preemptable tt-tasks.
With this abstraction we define a set of general constraints,
allowing a Satisfiability Modulo Theories (SMT) solver to
synthesize a system wide tt-schedule. Moreover, we present
a novel incremental approach for creating tt-schedules, based
on the utilization demand bound analysis for asynchronous
tasks [3] scheduled using the earliest deadline first (EDF)
algorithm [19], which significantly improves our scalability
factor. We evaluate our approach using synthetic workloads
and show that our algorithm scales for medium to large net-
worked systems achieving guaranteed high determinism and
minimal jitter.

In Section 2, we define the networked system model, which
we later use in Section 3 to construct logical constraints that
correctly describe a combined network and task schedule. In
Section 4 we introduce two scheduling algorithms based on
SMT, which we then evaluate using synthetic benchmarks
in Section 5. We present related research in Section 6 and
conclude the paper in Section 7.

2. NETWORKED SYSTEM MODEL
TTEthernet establishes a multi-hop layer 2 switched net-

work via full-duplex multi-speed links (e.g. 100 Mbit/s, 1
Gbit/s, etc.). We formally model the networked system as
a directed graph G(V,L). The set of vertexes (V) comprises
the set of communication nodes (switches and end-systems)
while the edges (L ✓ V ⇥ V) represent the directional com-
munication links connecting the nodes. Since we consider
bi-directional physical links, we have that 8[v

a

, v
b

] 2 L)
[v

b

, v
a

] 2 L, where [v
a

, v
b

] is an ordered tuple that represents
a directed logical network link connecting vertex v

a

2 V to
v
b

2 V. In addition to the network links, we also consider
tasks running on the end-system CPUs. We model the CPU
as a directional self-link, which we call CPU link, connecting
an end-system vertex with itself.
A network or CPU link [v

a

, v
b

] between nodes v
a

2 V and
v
b

2 V is defined by the tuple

h[v
a

, v
b

].s, [v
a

, v
b

].d, [v
a

, v
b

].mt, [v
a

, v
b

].bi,

where [v
a

, v
b

].s is the speed coe�cient, [v
a

, v
b

].d is the link
delay, [v

a

, v
b

].mt is the macrotick, and [v
a

, v
b

].b is the max-
imum bu↵er constraint. In the case of a CPU link, the
macrotick represents the granularity of the time-line that the
real-time operating system (RTOS) of the respective end-
system recognizes. A typical macrotick for a time-triggered
RTOS ranges from a few hundreds of microseconds to sev-
eral milliseconds [4, p. 266]. In the case of a network link
the macrotick is the time-line granularity of the physical
link. Typically, the TTEthernet time granularity is around
60ns [16] but larger values are commonly used. The link
delay refers to either the propagation and processing delay
on the medium in case of a network link or the queuing and
software overhead for a CPU link. The speed coe�cient is
used for calculating the transmission time of the frame on a
particular physical link based on its size and the link speed,
–for a network link the speed coe�cient represents the time
it takes to transmit one byte. Considering the minimum
and maximum frame sizes in the Ethernet protocol of 84
and 1542 bytes, respectively, the frame transmission time,
for example, on a 1Gbit/sec link would be 0.672µsec and

TTE B

TTE C

TTE A
TTE-Switch 1

TTE D

TTE-Switch 2

TTE E

physical link
communication path

Figure 1: A TTEthernet network with 5 end-systems

and 2 switches.

12.336µsec, respectively. For a CPU link, the speed coef-
ficient is used to allow heterogeneous CPUs with di↵erent
clock rates, resulting in di↵erent WCETs for the same task.
The maximum bu↵er constraint represents the maximum
amount of time a frame of any size can reside in the message
queues of the transmitting node (switch or end-system).
We denote the set of all tt-tasks in the system by �. A

tt-task ⌧v

a

i

2 � running on the end-system v
a

is defined,
similar to the periodic task model from [19], by the tuple

h⌧v

a

i

.�, ⌧v

a

i

.C, ⌧v

a

i

.D, ⌧v

a

i

.T i,

where ⌧v

a

i

.� is the o↵set, ⌧v

a

i

.C is the WCET, ⌧v

a

i

.D is the
relative deadline, and ⌧v

a

i

.T is the period of the task. Note
that, a tt-task is pre-assigned to one end-system CPU and
does not migrate during run-time. Hence, all task parame-
ters are scaled according to the macrotick and speed of the
respective CPU link. We denote the set of all tasks that run
on end-system v

a

by �v

a .
We model communication through the network via the

concept of virtual links, where a virtual link is a logical
data-flow path in the network from one sender node to one
receiver node over which a tt-message is transmitted. The
concept is similar to [1] but extended to include the tt-tasks
associated with the generation and consumption of the data
running at the end-systems. We distinguish three types of
tt-tasks, namely, producer, consumer, and free tt-tasks. Pro-
ducer tasks generate messages that are being sent on the
network, consumer tasks receive messages that arrive from
the network, and free tasks have no dependency towards
the network. Note that we assume the actual instant of
sending and receiving messages occurs at the end and at
the beginning of producer and consumer tasks, respectively.
Schedulability may improve by considering the exact mo-
ment in the execution of a task where the message is sent or
received (cf. [9]).
A virtual link vl

i

2 VL from a producer task running on
end-system v

a

to a consumer task running on end-system v
b

,
routed through the nodes (i.e. switches) v

1

, v
2

, . . . , v
n�1

, v
n

is expressed, similar to [28], as

vl
i

= [[v
a

, v
a

], [v
a

, v
1

], [v
1

, v
2

], . . . , [v
n�1

, v
n

], [v
n

, v
b

], [v
b

, v
b

]].

Additionally vl
i

.max latency denotes the maximum allowed
latency between the start of the producer task and the end of
the consumer task. For communicating tasks, a virtual link
is composed by the path through the network and the two
end-system CPU links [v

a

, v
a

] and [v
b

, v
b

]. For a free task
⌧v

a

i

2 �, a virtual link vl
i

is created with vl
i

= [[v
a

, v
a

]].
Our goal is to schedule virtual links considering the task-

and network-levels combined. Hence, we take both the tt-
message that is sent over the network and the computation
time of both producer and consumer tt-tasks and unify these
through the concept of frames.

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Time triggered communication

communication periods over a multi-speed switched TTEth-
ernet network. We model the CPUs as self-links on the end-
systems and schedule virtual frames (explained below) rep-
resenting non-preemptable chunks of preemptable tt-tasks.
With this abstraction we define a set of general constraints,
allowing a Satisfiability Modulo Theories (SMT) solver to
synthesize a system wide tt-schedule. Moreover, we present
a novel incremental approach for creating tt-schedules, based
on the utilization demand bound analysis for asynchronous
tasks [3] scheduled using the earliest deadline first (EDF)
algorithm [19], which significantly improves our scalability
factor. We evaluate our approach using synthetic workloads
and show that our algorithm scales for medium to large net-
worked systems achieving guaranteed high determinism and
minimal jitter.

In Section 2, we define the networked system model, which
we later use in Section 3 to construct logical constraints that
correctly describe a combined network and task schedule. In
Section 4 we introduce two scheduling algorithms based on
SMT, which we then evaluate using synthetic benchmarks
in Section 5. We present related research in Section 6 and
conclude the paper in Section 7.

2. NETWORKED SYSTEM MODEL
TTEthernet establishes a multi-hop layer 2 switched net-

work via full-duplex multi-speed links (e.g. 100 Mbit/s, 1
Gbit/s, etc.). We formally model the networked system as
a directed graph G(V,L). The set of vertexes (V) comprises
the set of communication nodes (switches and end-systems)
while the edges (L ✓ V ⇥ V) represent the directional com-
munication links connecting the nodes. Since we consider
bi-directional physical links, we have that 8[v

a

, v
b

] 2 L)
[v

b

, v
a

] 2 L, where [v
a

, v
b

] is an ordered tuple that represents
a directed logical network link connecting vertex v

a

2 V to
v
b

2 V. In addition to the network links, we also consider
tasks running on the end-system CPUs. We model the CPU
as a directional self-link, which we call CPU link, connecting
an end-system vertex with itself.
A network or CPU link [v

a

, v
b

] between nodes v
a

2 V and
v
b

2 V is defined by the tuple

h[v
a

, v
b

].s, [v
a

, v
b

].d, [v
a

, v
b

].mt, [v
a

, v
b

].bi,

where [v
a

, v
b

].s is the speed coe�cient, [v
a

, v
b

].d is the link
delay, [v

a

, v
b

].mt is the macrotick, and [v
a

, v
b

].b is the max-
imum bu↵er constraint. In the case of a CPU link, the
macrotick represents the granularity of the time-line that the
real-time operating system (RTOS) of the respective end-
system recognizes. A typical macrotick for a time-triggered
RTOS ranges from a few hundreds of microseconds to sev-
eral milliseconds [4, p. 266]. In the case of a network link
the macrotick is the time-line granularity of the physical
link. Typically, the TTEthernet time granularity is around
60ns [16] but larger values are commonly used. The link
delay refers to either the propagation and processing delay
on the medium in case of a network link or the queuing and
software overhead for a CPU link. The speed coe�cient is
used for calculating the transmission time of the frame on a
particular physical link based on its size and the link speed,
–for a network link the speed coe�cient represents the time
it takes to transmit one byte. Considering the minimum
and maximum frame sizes in the Ethernet protocol of 84
and 1542 bytes, respectively, the frame transmission time,
for example, on a 1Gbit/sec link would be 0.672µsec and

TTE B

TTE C

TTE A
TTE-Switch 1

TTE D

TTE-Switch 2

TTE E

physical link
communication path

Figure 1: A TTEthernet network with 5 end-systems

and 2 switches.

12.336µsec, respectively. For a CPU link, the speed coef-
ficient is used to allow heterogeneous CPUs with di↵erent
clock rates, resulting in di↵erent WCETs for the same task.
The maximum bu↵er constraint represents the maximum
amount of time a frame of any size can reside in the message
queues of the transmitting node (switch or end-system).
We denote the set of all tt-tasks in the system by �. A

tt-task ⌧v

a

i

2 � running on the end-system v
a

is defined,
similar to the periodic task model from [19], by the tuple

h⌧v

a

i

.�, ⌧v

a

i

.C, ⌧v

a

i

.D, ⌧v

a

i

.T i,

where ⌧v

a

i

.� is the o↵set, ⌧v

a

i

.C is the WCET, ⌧v

a

i

.D is the
relative deadline, and ⌧v

a

i

.T is the period of the task. Note
that, a tt-task is pre-assigned to one end-system CPU and
does not migrate during run-time. Hence, all task parame-
ters are scaled according to the macrotick and speed of the
respective CPU link. We denote the set of all tasks that run
on end-system v

a

by �v

a .
We model communication through the network via the

concept of virtual links, where a virtual link is a logical
data-flow path in the network from one sender node to one
receiver node over which a tt-message is transmitted. The
concept is similar to [1] but extended to include the tt-tasks
associated with the generation and consumption of the data
running at the end-systems. We distinguish three types of
tt-tasks, namely, producer, consumer, and free tt-tasks. Pro-
ducer tasks generate messages that are being sent on the
network, consumer tasks receive messages that arrive from
the network, and free tasks have no dependency towards
the network. Note that we assume the actual instant of
sending and receiving messages occurs at the end and at
the beginning of producer and consumer tasks, respectively.
Schedulability may improve by considering the exact mo-
ment in the execution of a task where the message is sent or
received (cf. [9]).
A virtual link vl

i

2 VL from a producer task running on
end-system v

a

to a consumer task running on end-system v
b

,
routed through the nodes (i.e. switches) v

1

, v
2

, . . . , v
n�1

, v
n

is expressed, similar to [28], as

vl
i

= [[v
a

, v
a

], [v
a

, v
1

], [v
1

, v
2

], . . . , [v
n�1

, v
n

], [v
n

, v
b

], [v
b

, v
b

]].

Additionally vl
i

.max latency denotes the maximum allowed
latency between the start of the producer task and the end of
the consumer task. For communicating tasks, a virtual link
is composed by the path through the network and the two
end-system CPU links [v

a

, v
a

] and [v
b

, v
b

]. For a free task
⌧v

a

i

2 �, a virtual link vl
i

is created with vl
i

= [[v
a

, v
a

]].
Our goal is to schedule virtual links considering the task-

and network-levels combined. Hence, we take both the tt-
message that is sent over the network and the computation
time of both producer and consumer tt-tasks and unify these
through the concept of frames.

80

task c	

(2,8)

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Time triggered communication

communication periods over a multi-speed switched TTEth-
ernet network. We model the CPUs as self-links on the end-
systems and schedule virtual frames (explained below) rep-
resenting non-preemptable chunks of preemptable tt-tasks.
With this abstraction we define a set of general constraints,
allowing a Satisfiability Modulo Theories (SMT) solver to
synthesize a system wide tt-schedule. Moreover, we present
a novel incremental approach for creating tt-schedules, based
on the utilization demand bound analysis for asynchronous
tasks [3] scheduled using the earliest deadline first (EDF)
algorithm [19], which significantly improves our scalability
factor. We evaluate our approach using synthetic workloads
and show that our algorithm scales for medium to large net-
worked systems achieving guaranteed high determinism and
minimal jitter.

In Section 2, we define the networked system model, which
we later use in Section 3 to construct logical constraints that
correctly describe a combined network and task schedule. In
Section 4 we introduce two scheduling algorithms based on
SMT, which we then evaluate using synthetic benchmarks
in Section 5. We present related research in Section 6 and
conclude the paper in Section 7.

2. NETWORKED SYSTEM MODEL
TTEthernet establishes a multi-hop layer 2 switched net-

work via full-duplex multi-speed links (e.g. 100 Mbit/s, 1
Gbit/s, etc.). We formally model the networked system as
a directed graph G(V,L). The set of vertexes (V) comprises
the set of communication nodes (switches and end-systems)
while the edges (L ✓ V ⇥ V) represent the directional com-
munication links connecting the nodes. Since we consider
bi-directional physical links, we have that 8[v

a

, v
b

] 2 L)
[v

b

, v
a

] 2 L, where [v
a

, v
b

] is an ordered tuple that represents
a directed logical network link connecting vertex v

a

2 V to
v
b

2 V. In addition to the network links, we also consider
tasks running on the end-system CPUs. We model the CPU
as a directional self-link, which we call CPU link, connecting
an end-system vertex with itself.
A network or CPU link [v

a

, v
b

] between nodes v
a

2 V and
v
b

2 V is defined by the tuple

h[v
a

, v
b

].s, [v
a

, v
b

].d, [v
a

, v
b

].mt, [v
a

, v
b

].bi,

where [v
a

, v
b

].s is the speed coe�cient, [v
a

, v
b

].d is the link
delay, [v

a

, v
b

].mt is the macrotick, and [v
a

, v
b

].b is the max-
imum bu↵er constraint. In the case of a CPU link, the
macrotick represents the granularity of the time-line that the
real-time operating system (RTOS) of the respective end-
system recognizes. A typical macrotick for a time-triggered
RTOS ranges from a few hundreds of microseconds to sev-
eral milliseconds [4, p. 266]. In the case of a network link
the macrotick is the time-line granularity of the physical
link. Typically, the TTEthernet time granularity is around
60ns [16] but larger values are commonly used. The link
delay refers to either the propagation and processing delay
on the medium in case of a network link or the queuing and
software overhead for a CPU link. The speed coe�cient is
used for calculating the transmission time of the frame on a
particular physical link based on its size and the link speed,
–for a network link the speed coe�cient represents the time
it takes to transmit one byte. Considering the minimum
and maximum frame sizes in the Ethernet protocol of 84
and 1542 bytes, respectively, the frame transmission time,
for example, on a 1Gbit/sec link would be 0.672µsec and

TTE B

TTE C

TTE A
TTE-Switch 1

TTE D

TTE-Switch 2

TTE E

physical link
communication path

Figure 1: A TTEthernet network with 5 end-systems

and 2 switches.

12.336µsec, respectively. For a CPU link, the speed coef-
ficient is used to allow heterogeneous CPUs with di↵erent
clock rates, resulting in di↵erent WCETs for the same task.
The maximum bu↵er constraint represents the maximum
amount of time a frame of any size can reside in the message
queues of the transmitting node (switch or end-system).
We denote the set of all tt-tasks in the system by �. A

tt-task ⌧v

a

i

2 � running on the end-system v
a

is defined,
similar to the periodic task model from [19], by the tuple

h⌧v

a

i

.�, ⌧v

a

i

.C, ⌧v

a

i

.D, ⌧v

a

i

.T i,

where ⌧v

a

i

.� is the o↵set, ⌧v

a

i

.C is the WCET, ⌧v

a

i

.D is the
relative deadline, and ⌧v

a

i

.T is the period of the task. Note
that, a tt-task is pre-assigned to one end-system CPU and
does not migrate during run-time. Hence, all task parame-
ters are scaled according to the macrotick and speed of the
respective CPU link. We denote the set of all tasks that run
on end-system v

a

by �v

a .
We model communication through the network via the

concept of virtual links, where a virtual link is a logical
data-flow path in the network from one sender node to one
receiver node over which a tt-message is transmitted. The
concept is similar to [1] but extended to include the tt-tasks
associated with the generation and consumption of the data
running at the end-systems. We distinguish three types of
tt-tasks, namely, producer, consumer, and free tt-tasks. Pro-
ducer tasks generate messages that are being sent on the
network, consumer tasks receive messages that arrive from
the network, and free tasks have no dependency towards
the network. Note that we assume the actual instant of
sending and receiving messages occurs at the end and at
the beginning of producer and consumer tasks, respectively.
Schedulability may improve by considering the exact mo-
ment in the execution of a task where the message is sent or
received (cf. [9]).
A virtual link vl

i

2 VL from a producer task running on
end-system v

a

to a consumer task running on end-system v
b

,
routed through the nodes (i.e. switches) v

1

, v
2

, . . . , v
n�1

, v
n

is expressed, similar to [28], as

vl
i

= [[v
a

, v
a

], [v
a

, v
1

], [v
1

, v
2

], . . . , [v
n�1

, v
n

], [v
n

, v
b

], [v
b

, v
b

]].

Additionally vl
i

.max latency denotes the maximum allowed
latency between the start of the producer task and the end of
the consumer task. For communicating tasks, a virtual link
is composed by the path through the network and the two
end-system CPU links [v

a

, v
a

] and [v
b

, v
b

]. For a free task
⌧v

a

i

2 �, a virtual link vl
i

is created with vl
i

= [[v
a

, v
a

]].
Our goal is to schedule virtual links considering the task-

and network-levels combined. Hence, we take both the tt-
message that is sent over the network and the computation
time of both producer and consumer tt-tasks and unify these
through the concept of frames.

80

task c	

(2,8)

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Time triggered communication

communication periods over a multi-speed switched TTEth-
ernet network. We model the CPUs as self-links on the end-
systems and schedule virtual frames (explained below) rep-
resenting non-preemptable chunks of preemptable tt-tasks.
With this abstraction we define a set of general constraints,
allowing a Satisfiability Modulo Theories (SMT) solver to
synthesize a system wide tt-schedule. Moreover, we present
a novel incremental approach for creating tt-schedules, based
on the utilization demand bound analysis for asynchronous
tasks [3] scheduled using the earliest deadline first (EDF)
algorithm [19], which significantly improves our scalability
factor. We evaluate our approach using synthetic workloads
and show that our algorithm scales for medium to large net-
worked systems achieving guaranteed high determinism and
minimal jitter.

In Section 2, we define the networked system model, which
we later use in Section 3 to construct logical constraints that
correctly describe a combined network and task schedule. In
Section 4 we introduce two scheduling algorithms based on
SMT, which we then evaluate using synthetic benchmarks
in Section 5. We present related research in Section 6 and
conclude the paper in Section 7.

2. NETWORKED SYSTEM MODEL
TTEthernet establishes a multi-hop layer 2 switched net-

work via full-duplex multi-speed links (e.g. 100 Mbit/s, 1
Gbit/s, etc.). We formally model the networked system as
a directed graph G(V,L). The set of vertexes (V) comprises
the set of communication nodes (switches and end-systems)
while the edges (L ✓ V ⇥ V) represent the directional com-
munication links connecting the nodes. Since we consider
bi-directional physical links, we have that 8[v

a

, v
b

] 2 L)
[v

b

, v
a

] 2 L, where [v
a

, v
b

] is an ordered tuple that represents
a directed logical network link connecting vertex v

a

2 V to
v
b

2 V. In addition to the network links, we also consider
tasks running on the end-system CPUs. We model the CPU
as a directional self-link, which we call CPU link, connecting
an end-system vertex with itself.
A network or CPU link [v

a

, v
b

] between nodes v
a

2 V and
v
b

2 V is defined by the tuple

h[v
a

, v
b

].s, [v
a

, v
b

].d, [v
a

, v
b

].mt, [v
a

, v
b

].bi,

where [v
a

, v
b

].s is the speed coe�cient, [v
a

, v
b

].d is the link
delay, [v

a

, v
b

].mt is the macrotick, and [v
a

, v
b

].b is the max-
imum bu↵er constraint. In the case of a CPU link, the
macrotick represents the granularity of the time-line that the
real-time operating system (RTOS) of the respective end-
system recognizes. A typical macrotick for a time-triggered
RTOS ranges from a few hundreds of microseconds to sev-
eral milliseconds [4, p. 266]. In the case of a network link
the macrotick is the time-line granularity of the physical
link. Typically, the TTEthernet time granularity is around
60ns [16] but larger values are commonly used. The link
delay refers to either the propagation and processing delay
on the medium in case of a network link or the queuing and
software overhead for a CPU link. The speed coe�cient is
used for calculating the transmission time of the frame on a
particular physical link based on its size and the link speed,
–for a network link the speed coe�cient represents the time
it takes to transmit one byte. Considering the minimum
and maximum frame sizes in the Ethernet protocol of 84
and 1542 bytes, respectively, the frame transmission time,
for example, on a 1Gbit/sec link would be 0.672µsec and

TTE B

TTE C

TTE A
TTE-Switch 1

TTE D

TTE-Switch 2

TTE E

physical link
communication path

Figure 1: A TTEthernet network with 5 end-systems

and 2 switches.

12.336µsec, respectively. For a CPU link, the speed coef-
ficient is used to allow heterogeneous CPUs with di↵erent
clock rates, resulting in di↵erent WCETs for the same task.
The maximum bu↵er constraint represents the maximum
amount of time a frame of any size can reside in the message
queues of the transmitting node (switch or end-system).
We denote the set of all tt-tasks in the system by �. A

tt-task ⌧v

a

i

2 � running on the end-system v
a

is defined,
similar to the periodic task model from [19], by the tuple

h⌧v

a

i

.�, ⌧v

a

i

.C, ⌧v

a

i

.D, ⌧v

a

i

.T i,

where ⌧v

a

i

.� is the o↵set, ⌧v

a

i

.C is the WCET, ⌧v

a

i

.D is the
relative deadline, and ⌧v

a

i

.T is the period of the task. Note
that, a tt-task is pre-assigned to one end-system CPU and
does not migrate during run-time. Hence, all task parame-
ters are scaled according to the macrotick and speed of the
respective CPU link. We denote the set of all tasks that run
on end-system v

a

by �v

a .
We model communication through the network via the

concept of virtual links, where a virtual link is a logical
data-flow path in the network from one sender node to one
receiver node over which a tt-message is transmitted. The
concept is similar to [1] but extended to include the tt-tasks
associated with the generation and consumption of the data
running at the end-systems. We distinguish three types of
tt-tasks, namely, producer, consumer, and free tt-tasks. Pro-
ducer tasks generate messages that are being sent on the
network, consumer tasks receive messages that arrive from
the network, and free tasks have no dependency towards
the network. Note that we assume the actual instant of
sending and receiving messages occurs at the end and at
the beginning of producer and consumer tasks, respectively.
Schedulability may improve by considering the exact mo-
ment in the execution of a task where the message is sent or
received (cf. [9]).
A virtual link vl

i

2 VL from a producer task running on
end-system v

a

to a consumer task running on end-system v
b

,
routed through the nodes (i.e. switches) v

1

, v
2

, . . . , v
n�1

, v
n

is expressed, similar to [28], as

vl
i

= [[v
a

, v
a

], [v
a

, v
1

], [v
1

, v
2

], . . . , [v
n�1

, v
n

], [v
n

, v
b

], [v
b

, v
b

]].

Additionally vl
i

.max latency denotes the maximum allowed
latency between the start of the producer task and the end of
the consumer task. For communicating tasks, a virtual link
is composed by the path through the network and the two
end-system CPU links [v

a

, v
a

] and [v
b

, v
b

]. For a free task
⌧v

a

i

2 �, a virtual link vl
i

is created with vl
i

= [[v
a

, v
a

]].
Our goal is to schedule virtual links considering the task-

and network-levels combined. Hence, we take both the tt-
message that is sent over the network and the computation
time of both producer and consumer tt-tasks and unify these
through the concept of frames.

80

task c	

(2,8)

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Time triggered communication

communication periods over a multi-speed switched TTEth-
ernet network. We model the CPUs as self-links on the end-
systems and schedule virtual frames (explained below) rep-
resenting non-preemptable chunks of preemptable tt-tasks.
With this abstraction we define a set of general constraints,
allowing a Satisfiability Modulo Theories (SMT) solver to
synthesize a system wide tt-schedule. Moreover, we present
a novel incremental approach for creating tt-schedules, based
on the utilization demand bound analysis for asynchronous
tasks [3] scheduled using the earliest deadline first (EDF)
algorithm [19], which significantly improves our scalability
factor. We evaluate our approach using synthetic workloads
and show that our algorithm scales for medium to large net-
worked systems achieving guaranteed high determinism and
minimal jitter.

In Section 2, we define the networked system model, which
we later use in Section 3 to construct logical constraints that
correctly describe a combined network and task schedule. In
Section 4 we introduce two scheduling algorithms based on
SMT, which we then evaluate using synthetic benchmarks
in Section 5. We present related research in Section 6 and
conclude the paper in Section 7.

2. NETWORKED SYSTEM MODEL
TTEthernet establishes a multi-hop layer 2 switched net-

work via full-duplex multi-speed links (e.g. 100 Mbit/s, 1
Gbit/s, etc.). We formally model the networked system as
a directed graph G(V,L). The set of vertexes (V) comprises
the set of communication nodes (switches and end-systems)
while the edges (L ✓ V ⇥ V) represent the directional com-
munication links connecting the nodes. Since we consider
bi-directional physical links, we have that 8[v

a

, v
b

] 2 L)
[v

b

, v
a

] 2 L, where [v
a

, v
b

] is an ordered tuple that represents
a directed logical network link connecting vertex v

a

2 V to
v
b

2 V. In addition to the network links, we also consider
tasks running on the end-system CPUs. We model the CPU
as a directional self-link, which we call CPU link, connecting
an end-system vertex with itself.
A network or CPU link [v

a

, v
b

] between nodes v
a

2 V and
v
b

2 V is defined by the tuple

h[v
a

, v
b

].s, [v
a

, v
b

].d, [v
a

, v
b

].mt, [v
a

, v
b

].bi,

where [v
a

, v
b

].s is the speed coe�cient, [v
a

, v
b

].d is the link
delay, [v

a

, v
b

].mt is the macrotick, and [v
a

, v
b

].b is the max-
imum bu↵er constraint. In the case of a CPU link, the
macrotick represents the granularity of the time-line that the
real-time operating system (RTOS) of the respective end-
system recognizes. A typical macrotick for a time-triggered
RTOS ranges from a few hundreds of microseconds to sev-
eral milliseconds [4, p. 266]. In the case of a network link
the macrotick is the time-line granularity of the physical
link. Typically, the TTEthernet time granularity is around
60ns [16] but larger values are commonly used. The link
delay refers to either the propagation and processing delay
on the medium in case of a network link or the queuing and
software overhead for a CPU link. The speed coe�cient is
used for calculating the transmission time of the frame on a
particular physical link based on its size and the link speed,
–for a network link the speed coe�cient represents the time
it takes to transmit one byte. Considering the minimum
and maximum frame sizes in the Ethernet protocol of 84
and 1542 bytes, respectively, the frame transmission time,
for example, on a 1Gbit/sec link would be 0.672µsec and

TTE B

TTE C

TTE A
TTE-Switch 1

TTE D

TTE-Switch 2

TTE E

physical link
communication path

Figure 1: A TTEthernet network with 5 end-systems

and 2 switches.

12.336µsec, respectively. For a CPU link, the speed coef-
ficient is used to allow heterogeneous CPUs with di↵erent
clock rates, resulting in di↵erent WCETs for the same task.
The maximum bu↵er constraint represents the maximum
amount of time a frame of any size can reside in the message
queues of the transmitting node (switch or end-system).
We denote the set of all tt-tasks in the system by �. A

tt-task ⌧v

a

i

2 � running on the end-system v
a

is defined,
similar to the periodic task model from [19], by the tuple

h⌧v

a

i

.�, ⌧v

a

i

.C, ⌧v

a

i

.D, ⌧v

a

i

.T i,

where ⌧v

a

i

.� is the o↵set, ⌧v

a

i

.C is the WCET, ⌧v

a

i

.D is the
relative deadline, and ⌧v

a

i

.T is the period of the task. Note
that, a tt-task is pre-assigned to one end-system CPU and
does not migrate during run-time. Hence, all task parame-
ters are scaled according to the macrotick and speed of the
respective CPU link. We denote the set of all tasks that run
on end-system v

a

by �v

a .
We model communication through the network via the

concept of virtual links, where a virtual link is a logical
data-flow path in the network from one sender node to one
receiver node over which a tt-message is transmitted. The
concept is similar to [1] but extended to include the tt-tasks
associated with the generation and consumption of the data
running at the end-systems. We distinguish three types of
tt-tasks, namely, producer, consumer, and free tt-tasks. Pro-
ducer tasks generate messages that are being sent on the
network, consumer tasks receive messages that arrive from
the network, and free tasks have no dependency towards
the network. Note that we assume the actual instant of
sending and receiving messages occurs at the end and at
the beginning of producer and consumer tasks, respectively.
Schedulability may improve by considering the exact mo-
ment in the execution of a task where the message is sent or
received (cf. [9]).
A virtual link vl

i

2 VL from a producer task running on
end-system v

a

to a consumer task running on end-system v
b

,
routed through the nodes (i.e. switches) v

1

, v
2

, . . . , v
n�1

, v
n

is expressed, similar to [28], as

vl
i

= [[v
a

, v
a

], [v
a

, v
1

], [v
1

, v
2

], . . . , [v
n�1

, v
n

], [v
n

, v
b

], [v
b

, v
b

]].

Additionally vl
i

.max latency denotes the maximum allowed
latency between the start of the producer task and the end of
the consumer task. For communicating tasks, a virtual link
is composed by the path through the network and the two
end-system CPU links [v

a

, v
a

] and [v
b

, v
b

]. For a free task
⌧v

a

i

2 �, a virtual link vl
i

is created with vl
i

= [[v
a

, v
a

]].
Our goal is to schedule virtual links considering the task-

and network-levels combined. Hence, we take both the tt-
message that is sent over the network and the computation
time of both producer and consumer tt-tasks and unify these
through the concept of frames.

80

task c	

(2,8)

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Time triggered communication

communication periods over a multi-speed switched TTEth-
ernet network. We model the CPUs as self-links on the end-
systems and schedule virtual frames (explained below) rep-
resenting non-preemptable chunks of preemptable tt-tasks.
With this abstraction we define a set of general constraints,
allowing a Satisfiability Modulo Theories (SMT) solver to
synthesize a system wide tt-schedule. Moreover, we present
a novel incremental approach for creating tt-schedules, based
on the utilization demand bound analysis for asynchronous
tasks [3] scheduled using the earliest deadline first (EDF)
algorithm [19], which significantly improves our scalability
factor. We evaluate our approach using synthetic workloads
and show that our algorithm scales for medium to large net-
worked systems achieving guaranteed high determinism and
minimal jitter.

In Section 2, we define the networked system model, which
we later use in Section 3 to construct logical constraints that
correctly describe a combined network and task schedule. In
Section 4 we introduce two scheduling algorithms based on
SMT, which we then evaluate using synthetic benchmarks
in Section 5. We present related research in Section 6 and
conclude the paper in Section 7.

2. NETWORKED SYSTEM MODEL
TTEthernet establishes a multi-hop layer 2 switched net-

work via full-duplex multi-speed links (e.g. 100 Mbit/s, 1
Gbit/s, etc.). We formally model the networked system as
a directed graph G(V,L). The set of vertexes (V) comprises
the set of communication nodes (switches and end-systems)
while the edges (L ✓ V ⇥ V) represent the directional com-
munication links connecting the nodes. Since we consider
bi-directional physical links, we have that 8[v

a

, v
b

] 2 L)
[v

b

, v
a

] 2 L, where [v
a

, v
b

] is an ordered tuple that represents
a directed logical network link connecting vertex v

a

2 V to
v
b

2 V. In addition to the network links, we also consider
tasks running on the end-system CPUs. We model the CPU
as a directional self-link, which we call CPU link, connecting
an end-system vertex with itself.
A network or CPU link [v

a

, v
b

] between nodes v
a

2 V and
v
b

2 V is defined by the tuple

h[v
a

, v
b

].s, [v
a

, v
b

].d, [v
a

, v
b

].mt, [v
a

, v
b

].bi,

where [v
a

, v
b

].s is the speed coe�cient, [v
a

, v
b

].d is the link
delay, [v

a

, v
b

].mt is the macrotick, and [v
a

, v
b

].b is the max-
imum bu↵er constraint. In the case of a CPU link, the
macrotick represents the granularity of the time-line that the
real-time operating system (RTOS) of the respective end-
system recognizes. A typical macrotick for a time-triggered
RTOS ranges from a few hundreds of microseconds to sev-
eral milliseconds [4, p. 266]. In the case of a network link
the macrotick is the time-line granularity of the physical
link. Typically, the TTEthernet time granularity is around
60ns [16] but larger values are commonly used. The link
delay refers to either the propagation and processing delay
on the medium in case of a network link or the queuing and
software overhead for a CPU link. The speed coe�cient is
used for calculating the transmission time of the frame on a
particular physical link based on its size and the link speed,
–for a network link the speed coe�cient represents the time
it takes to transmit one byte. Considering the minimum
and maximum frame sizes in the Ethernet protocol of 84
and 1542 bytes, respectively, the frame transmission time,
for example, on a 1Gbit/sec link would be 0.672µsec and

TTE B

TTE C

TTE A
TTE-Switch 1

TTE D

TTE-Switch 2

TTE E

physical link
communication path

Figure 1: A TTEthernet network with 5 end-systems

and 2 switches.

12.336µsec, respectively. For a CPU link, the speed coef-
ficient is used to allow heterogeneous CPUs with di↵erent
clock rates, resulting in di↵erent WCETs for the same task.
The maximum bu↵er constraint represents the maximum
amount of time a frame of any size can reside in the message
queues of the transmitting node (switch or end-system).
We denote the set of all tt-tasks in the system by �. A

tt-task ⌧v

a

i

2 � running on the end-system v
a

is defined,
similar to the periodic task model from [19], by the tuple

h⌧v

a

i

.�, ⌧v

a

i

.C, ⌧v

a

i

.D, ⌧v

a

i

.T i,

where ⌧v

a

i

.� is the o↵set, ⌧v

a

i

.C is the WCET, ⌧v

a

i

.D is the
relative deadline, and ⌧v

a

i

.T is the period of the task. Note
that, a tt-task is pre-assigned to one end-system CPU and
does not migrate during run-time. Hence, all task parame-
ters are scaled according to the macrotick and speed of the
respective CPU link. We denote the set of all tasks that run
on end-system v

a

by �v

a .
We model communication through the network via the

concept of virtual links, where a virtual link is a logical
data-flow path in the network from one sender node to one
receiver node over which a tt-message is transmitted. The
concept is similar to [1] but extended to include the tt-tasks
associated with the generation and consumption of the data
running at the end-systems. We distinguish three types of
tt-tasks, namely, producer, consumer, and free tt-tasks. Pro-
ducer tasks generate messages that are being sent on the
network, consumer tasks receive messages that arrive from
the network, and free tasks have no dependency towards
the network. Note that we assume the actual instant of
sending and receiving messages occurs at the end and at
the beginning of producer and consumer tasks, respectively.
Schedulability may improve by considering the exact mo-
ment in the execution of a task where the message is sent or
received (cf. [9]).
A virtual link vl

i

2 VL from a producer task running on
end-system v

a

to a consumer task running on end-system v
b

,
routed through the nodes (i.e. switches) v

1

, v
2

, . . . , v
n�1

, v
n

is expressed, similar to [28], as

vl
i

= [[v
a

, v
a

], [v
a

, v
1

], [v
1

, v
2

], . . . , [v
n�1

, v
n

], [v
n

, v
b

], [v
b

, v
b

]].

Additionally vl
i

.max latency denotes the maximum allowed
latency between the start of the producer task and the end of
the consumer task. For communicating tasks, a virtual link
is composed by the path through the network and the two
end-system CPU links [v

a

, v
a

] and [v
b

, v
b

]. For a free task
⌧v

a

i

2 �, a virtual link vl
i

is created with vl
i

= [[v
a

, v
a

]].
Our goal is to schedule virtual links considering the task-

and network-levels combined. Hence, we take both the tt-
message that is sent over the network and the computation
time of both producer and consumer tt-tasks and unify these
through the concept of frames.

80

task c	

(2,8)

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Time triggered communication

communication periods over a multi-speed switched TTEth-
ernet network. We model the CPUs as self-links on the end-
systems and schedule virtual frames (explained below) rep-
resenting non-preemptable chunks of preemptable tt-tasks.
With this abstraction we define a set of general constraints,
allowing a Satisfiability Modulo Theories (SMT) solver to
synthesize a system wide tt-schedule. Moreover, we present
a novel incremental approach for creating tt-schedules, based
on the utilization demand bound analysis for asynchronous
tasks [3] scheduled using the earliest deadline first (EDF)
algorithm [19], which significantly improves our scalability
factor. We evaluate our approach using synthetic workloads
and show that our algorithm scales for medium to large net-
worked systems achieving guaranteed high determinism and
minimal jitter.

In Section 2, we define the networked system model, which
we later use in Section 3 to construct logical constraints that
correctly describe a combined network and task schedule. In
Section 4 we introduce two scheduling algorithms based on
SMT, which we then evaluate using synthetic benchmarks
in Section 5. We present related research in Section 6 and
conclude the paper in Section 7.

2. NETWORKED SYSTEM MODEL
TTEthernet establishes a multi-hop layer 2 switched net-

work via full-duplex multi-speed links (e.g. 100 Mbit/s, 1
Gbit/s, etc.). We formally model the networked system as
a directed graph G(V,L). The set of vertexes (V) comprises
the set of communication nodes (switches and end-systems)
while the edges (L ✓ V ⇥ V) represent the directional com-
munication links connecting the nodes. Since we consider
bi-directional physical links, we have that 8[v

a

, v
b

] 2 L)
[v

b

, v
a

] 2 L, where [v
a

, v
b

] is an ordered tuple that represents
a directed logical network link connecting vertex v

a

2 V to
v
b

2 V. In addition to the network links, we also consider
tasks running on the end-system CPUs. We model the CPU
as a directional self-link, which we call CPU link, connecting
an end-system vertex with itself.
A network or CPU link [v

a

, v
b

] between nodes v
a

2 V and
v
b

2 V is defined by the tuple

h[v
a

, v
b

].s, [v
a

, v
b

].d, [v
a

, v
b

].mt, [v
a

, v
b

].bi,

where [v
a

, v
b

].s is the speed coe�cient, [v
a

, v
b

].d is the link
delay, [v

a

, v
b

].mt is the macrotick, and [v
a

, v
b

].b is the max-
imum bu↵er constraint. In the case of a CPU link, the
macrotick represents the granularity of the time-line that the
real-time operating system (RTOS) of the respective end-
system recognizes. A typical macrotick for a time-triggered
RTOS ranges from a few hundreds of microseconds to sev-
eral milliseconds [4, p. 266]. In the case of a network link
the macrotick is the time-line granularity of the physical
link. Typically, the TTEthernet time granularity is around
60ns [16] but larger values are commonly used. The link
delay refers to either the propagation and processing delay
on the medium in case of a network link or the queuing and
software overhead for a CPU link. The speed coe�cient is
used for calculating the transmission time of the frame on a
particular physical link based on its size and the link speed,
–for a network link the speed coe�cient represents the time
it takes to transmit one byte. Considering the minimum
and maximum frame sizes in the Ethernet protocol of 84
and 1542 bytes, respectively, the frame transmission time,
for example, on a 1Gbit/sec link would be 0.672µsec and

TTE B

TTE C

TTE A
TTE-Switch 1

TTE D

TTE-Switch 2

TTE E

physical link
communication path

Figure 1: A TTEthernet network with 5 end-systems

and 2 switches.

12.336µsec, respectively. For a CPU link, the speed coef-
ficient is used to allow heterogeneous CPUs with di↵erent
clock rates, resulting in di↵erent WCETs for the same task.
The maximum bu↵er constraint represents the maximum
amount of time a frame of any size can reside in the message
queues of the transmitting node (switch or end-system).
We denote the set of all tt-tasks in the system by �. A

tt-task ⌧v

a

i

2 � running on the end-system v
a

is defined,
similar to the periodic task model from [19], by the tuple

h⌧v

a

i

.�, ⌧v

a

i

.C, ⌧v

a

i

.D, ⌧v

a

i

.T i,

where ⌧v

a

i

.� is the o↵set, ⌧v

a

i

.C is the WCET, ⌧v

a

i

.D is the
relative deadline, and ⌧v

a

i

.T is the period of the task. Note
that, a tt-task is pre-assigned to one end-system CPU and
does not migrate during run-time. Hence, all task parame-
ters are scaled according to the macrotick and speed of the
respective CPU link. We denote the set of all tasks that run
on end-system v

a

by �v

a .
We model communication through the network via the

concept of virtual links, where a virtual link is a logical
data-flow path in the network from one sender node to one
receiver node over which a tt-message is transmitted. The
concept is similar to [1] but extended to include the tt-tasks
associated with the generation and consumption of the data
running at the end-systems. We distinguish three types of
tt-tasks, namely, producer, consumer, and free tt-tasks. Pro-
ducer tasks generate messages that are being sent on the
network, consumer tasks receive messages that arrive from
the network, and free tasks have no dependency towards
the network. Note that we assume the actual instant of
sending and receiving messages occurs at the end and at
the beginning of producer and consumer tasks, respectively.
Schedulability may improve by considering the exact mo-
ment in the execution of a task where the message is sent or
received (cf. [9]).
A virtual link vl

i

2 VL from a producer task running on
end-system v

a

to a consumer task running on end-system v
b

,
routed through the nodes (i.e. switches) v

1

, v
2

, . . . , v
n�1

, v
n

is expressed, similar to [28], as

vl
i

= [[v
a

, v
a

], [v
a

, v
1

], [v
1

, v
2

], . . . , [v
n�1

, v
n

], [v
n

, v
b

], [v
b

, v
b

]].

Additionally vl
i

.max latency denotes the maximum allowed
latency between the start of the producer task and the end of
the consumer task. For communicating tasks, a virtual link
is composed by the path through the network and the two
end-system CPU links [v

a

, v
a

] and [v
b

, v
b

]. For a free task
⌧v

a

i

2 �, a virtual link vl
i

is created with vl
i

= [[v
a

, v
a

]].
Our goal is to schedule virtual links considering the task-

and network-levels combined. Hence, we take both the tt-
message that is sent over the network and the computation
time of both producer and consumer tt-tasks and unify these
through the concept of frames.

80

task c	

(2,8)

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Time triggered communication

communication periods over a multi-speed switched TTEth-
ernet network. We model the CPUs as self-links on the end-
systems and schedule virtual frames (explained below) rep-
resenting non-preemptable chunks of preemptable tt-tasks.
With this abstraction we define a set of general constraints,
allowing a Satisfiability Modulo Theories (SMT) solver to
synthesize a system wide tt-schedule. Moreover, we present
a novel incremental approach for creating tt-schedules, based
on the utilization demand bound analysis for asynchronous
tasks [3] scheduled using the earliest deadline first (EDF)
algorithm [19], which significantly improves our scalability
factor. We evaluate our approach using synthetic workloads
and show that our algorithm scales for medium to large net-
worked systems achieving guaranteed high determinism and
minimal jitter.

In Section 2, we define the networked system model, which
we later use in Section 3 to construct logical constraints that
correctly describe a combined network and task schedule. In
Section 4 we introduce two scheduling algorithms based on
SMT, which we then evaluate using synthetic benchmarks
in Section 5. We present related research in Section 6 and
conclude the paper in Section 7.

2. NETWORKED SYSTEM MODEL
TTEthernet establishes a multi-hop layer 2 switched net-

work via full-duplex multi-speed links (e.g. 100 Mbit/s, 1
Gbit/s, etc.). We formally model the networked system as
a directed graph G(V,L). The set of vertexes (V) comprises
the set of communication nodes (switches and end-systems)
while the edges (L ✓ V ⇥ V) represent the directional com-
munication links connecting the nodes. Since we consider
bi-directional physical links, we have that 8[v

a

, v
b

] 2 L)
[v

b

, v
a

] 2 L, where [v
a

, v
b

] is an ordered tuple that represents
a directed logical network link connecting vertex v

a

2 V to
v
b

2 V. In addition to the network links, we also consider
tasks running on the end-system CPUs. We model the CPU
as a directional self-link, which we call CPU link, connecting
an end-system vertex with itself.
A network or CPU link [v

a

, v
b

] between nodes v
a

2 V and
v
b

2 V is defined by the tuple

h[v
a

, v
b

].s, [v
a

, v
b

].d, [v
a

, v
b

].mt, [v
a

, v
b

].bi,

where [v
a

, v
b

].s is the speed coe�cient, [v
a

, v
b

].d is the link
delay, [v

a

, v
b

].mt is the macrotick, and [v
a

, v
b

].b is the max-
imum bu↵er constraint. In the case of a CPU link, the
macrotick represents the granularity of the time-line that the
real-time operating system (RTOS) of the respective end-
system recognizes. A typical macrotick for a time-triggered
RTOS ranges from a few hundreds of microseconds to sev-
eral milliseconds [4, p. 266]. In the case of a network link
the macrotick is the time-line granularity of the physical
link. Typically, the TTEthernet time granularity is around
60ns [16] but larger values are commonly used. The link
delay refers to either the propagation and processing delay
on the medium in case of a network link or the queuing and
software overhead for a CPU link. The speed coe�cient is
used for calculating the transmission time of the frame on a
particular physical link based on its size and the link speed,
–for a network link the speed coe�cient represents the time
it takes to transmit one byte. Considering the minimum
and maximum frame sizes in the Ethernet protocol of 84
and 1542 bytes, respectively, the frame transmission time,
for example, on a 1Gbit/sec link would be 0.672µsec and

TTE B

TTE C

TTE A
TTE-Switch 1

TTE D

TTE-Switch 2

TTE E

physical link
communication path

Figure 1: A TTEthernet network with 5 end-systems

and 2 switches.

12.336µsec, respectively. For a CPU link, the speed coef-
ficient is used to allow heterogeneous CPUs with di↵erent
clock rates, resulting in di↵erent WCETs for the same task.
The maximum bu↵er constraint represents the maximum
amount of time a frame of any size can reside in the message
queues of the transmitting node (switch or end-system).
We denote the set of all tt-tasks in the system by �. A

tt-task ⌧v

a

i

2 � running on the end-system v
a

is defined,
similar to the periodic task model from [19], by the tuple

h⌧v

a

i

.�, ⌧v

a

i

.C, ⌧v

a

i

.D, ⌧v

a

i

.T i,

where ⌧v

a

i

.� is the o↵set, ⌧v

a

i

.C is the WCET, ⌧v

a

i

.D is the
relative deadline, and ⌧v

a

i

.T is the period of the task. Note
that, a tt-task is pre-assigned to one end-system CPU and
does not migrate during run-time. Hence, all task parame-
ters are scaled according to the macrotick and speed of the
respective CPU link. We denote the set of all tasks that run
on end-system v

a

by �v

a .
We model communication through the network via the

concept of virtual links, where a virtual link is a logical
data-flow path in the network from one sender node to one
receiver node over which a tt-message is transmitted. The
concept is similar to [1] but extended to include the tt-tasks
associated with the generation and consumption of the data
running at the end-systems. We distinguish three types of
tt-tasks, namely, producer, consumer, and free tt-tasks. Pro-
ducer tasks generate messages that are being sent on the
network, consumer tasks receive messages that arrive from
the network, and free tasks have no dependency towards
the network. Note that we assume the actual instant of
sending and receiving messages occurs at the end and at
the beginning of producer and consumer tasks, respectively.
Schedulability may improve by considering the exact mo-
ment in the execution of a task where the message is sent or
received (cf. [9]).
A virtual link vl

i

2 VL from a producer task running on
end-system v

a

to a consumer task running on end-system v
b

,
routed through the nodes (i.e. switches) v

1

, v
2

, . . . , v
n�1

, v
n

is expressed, similar to [28], as

vl
i

= [[v
a

, v
a

], [v
a

, v
1

], [v
1

, v
2

], . . . , [v
n�1

, v
n

], [v
n

, v
b

], [v
b

, v
b

]].

Additionally vl
i

.max latency denotes the maximum allowed
latency between the start of the producer task and the end of
the consumer task. For communicating tasks, a virtual link
is composed by the path through the network and the two
end-system CPU links [v

a

, v
a

] and [v
b

, v
b

]. For a free task
⌧v

a

i

2 �, a virtual link vl
i

is created with vl
i

= [[v
a

, v
a

]].
Our goal is to schedule virtual links considering the task-

and network-levels combined. Hence, we take both the tt-
message that is sent over the network and the computation
time of both producer and consumer tt-tasks and unify these
through the concept of frames.

80

task c	

(2,8)

task e	

(3,8) 0 8

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Time triggered communication

communication periods over a multi-speed switched TTEth-
ernet network. We model the CPUs as self-links on the end-
systems and schedule virtual frames (explained below) rep-
resenting non-preemptable chunks of preemptable tt-tasks.
With this abstraction we define a set of general constraints,
allowing a Satisfiability Modulo Theories (SMT) solver to
synthesize a system wide tt-schedule. Moreover, we present
a novel incremental approach for creating tt-schedules, based
on the utilization demand bound analysis for asynchronous
tasks [3] scheduled using the earliest deadline first (EDF)
algorithm [19], which significantly improves our scalability
factor. We evaluate our approach using synthetic workloads
and show that our algorithm scales for medium to large net-
worked systems achieving guaranteed high determinism and
minimal jitter.

In Section 2, we define the networked system model, which
we later use in Section 3 to construct logical constraints that
correctly describe a combined network and task schedule. In
Section 4 we introduce two scheduling algorithms based on
SMT, which we then evaluate using synthetic benchmarks
in Section 5. We present related research in Section 6 and
conclude the paper in Section 7.

2. NETWORKED SYSTEM MODEL
TTEthernet establishes a multi-hop layer 2 switched net-

work via full-duplex multi-speed links (e.g. 100 Mbit/s, 1
Gbit/s, etc.). We formally model the networked system as
a directed graph G(V,L). The set of vertexes (V) comprises
the set of communication nodes (switches and end-systems)
while the edges (L ✓ V ⇥ V) represent the directional com-
munication links connecting the nodes. Since we consider
bi-directional physical links, we have that 8[v

a

, v
b

] 2 L)
[v

b

, v
a

] 2 L, where [v
a

, v
b

] is an ordered tuple that represents
a directed logical network link connecting vertex v

a

2 V to
v
b

2 V. In addition to the network links, we also consider
tasks running on the end-system CPUs. We model the CPU
as a directional self-link, which we call CPU link, connecting
an end-system vertex with itself.
A network or CPU link [v

a

, v
b

] between nodes v
a

2 V and
v
b

2 V is defined by the tuple

h[v
a

, v
b

].s, [v
a

, v
b

].d, [v
a

, v
b

].mt, [v
a

, v
b

].bi,

where [v
a

, v
b

].s is the speed coe�cient, [v
a

, v
b

].d is the link
delay, [v

a

, v
b

].mt is the macrotick, and [v
a

, v
b

].b is the max-
imum bu↵er constraint. In the case of a CPU link, the
macrotick represents the granularity of the time-line that the
real-time operating system (RTOS) of the respective end-
system recognizes. A typical macrotick for a time-triggered
RTOS ranges from a few hundreds of microseconds to sev-
eral milliseconds [4, p. 266]. In the case of a network link
the macrotick is the time-line granularity of the physical
link. Typically, the TTEthernet time granularity is around
60ns [16] but larger values are commonly used. The link
delay refers to either the propagation and processing delay
on the medium in case of a network link or the queuing and
software overhead for a CPU link. The speed coe�cient is
used for calculating the transmission time of the frame on a
particular physical link based on its size and the link speed,
–for a network link the speed coe�cient represents the time
it takes to transmit one byte. Considering the minimum
and maximum frame sizes in the Ethernet protocol of 84
and 1542 bytes, respectively, the frame transmission time,
for example, on a 1Gbit/sec link would be 0.672µsec and

TTE B

TTE C

TTE A
TTE-Switch 1

TTE D

TTE-Switch 2

TTE E

physical link
communication path

Figure 1: A TTEthernet network with 5 end-systems

and 2 switches.

12.336µsec, respectively. For a CPU link, the speed coef-
ficient is used to allow heterogeneous CPUs with di↵erent
clock rates, resulting in di↵erent WCETs for the same task.
The maximum bu↵er constraint represents the maximum
amount of time a frame of any size can reside in the message
queues of the transmitting node (switch or end-system).
We denote the set of all tt-tasks in the system by �. A

tt-task ⌧v

a

i

2 � running on the end-system v
a

is defined,
similar to the periodic task model from [19], by the tuple

h⌧v

a

i

.�, ⌧v

a

i

.C, ⌧v

a

i

.D, ⌧v

a

i

.T i,

where ⌧v

a

i

.� is the o↵set, ⌧v

a

i

.C is the WCET, ⌧v

a

i

.D is the
relative deadline, and ⌧v

a

i

.T is the period of the task. Note
that, a tt-task is pre-assigned to one end-system CPU and
does not migrate during run-time. Hence, all task parame-
ters are scaled according to the macrotick and speed of the
respective CPU link. We denote the set of all tasks that run
on end-system v

a

by �v

a .
We model communication through the network via the

concept of virtual links, where a virtual link is a logical
data-flow path in the network from one sender node to one
receiver node over which a tt-message is transmitted. The
concept is similar to [1] but extended to include the tt-tasks
associated with the generation and consumption of the data
running at the end-systems. We distinguish three types of
tt-tasks, namely, producer, consumer, and free tt-tasks. Pro-
ducer tasks generate messages that are being sent on the
network, consumer tasks receive messages that arrive from
the network, and free tasks have no dependency towards
the network. Note that we assume the actual instant of
sending and receiving messages occurs at the end and at
the beginning of producer and consumer tasks, respectively.
Schedulability may improve by considering the exact mo-
ment in the execution of a task where the message is sent or
received (cf. [9]).
A virtual link vl

i

2 VL from a producer task running on
end-system v

a

to a consumer task running on end-system v
b

,
routed through the nodes (i.e. switches) v

1

, v
2

, . . . , v
n�1

, v
n

is expressed, similar to [28], as

vl
i

= [[v
a

, v
a

], [v
a

, v
1

], [v
1

, v
2

], . . . , [v
n�1

, v
n

], [v
n

, v
b

], [v
b

, v
b

]].

Additionally vl
i

.max latency denotes the maximum allowed
latency between the start of the producer task and the end of
the consumer task. For communicating tasks, a virtual link
is composed by the path through the network and the two
end-system CPU links [v

a

, v
a

] and [v
b

, v
b

]. For a free task
⌧v

a

i

2 �, a virtual link vl
i

is created with vl
i

= [[v
a

, v
a

]].
Our goal is to schedule virtual links considering the task-

and network-levels combined. Hence, we take both the tt-
message that is sent over the network and the computation
time of both producer and consumer tt-tasks and unify these
through the concept of frames.

80

task c	

(2,8)

task e	

(3,8) 0 8

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Scheduling

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Sequential scheduling	

• Network [Steiner@RTSS10] ▷ Tasks [Craciunas@ETFA14]	

• Tasks ▷ Network [Hanzalek@ECRTS09]

Scheduling

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Sequential scheduling	

• Network [Steiner@RTSS10] ▷ Tasks [Craciunas@ETFA14]	

• Tasks ▷ Network [Hanzalek@ECRTS09]

Scheduling

Combined scheduling

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Sequential scheduling	

• Network [Steiner@RTSS10] ▷ Tasks [Craciunas@ETFA14]	

• Tasks ▷ Network [Hanzalek@ECRTS09]

Scheduling

Combined scheduling

Network model

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Sequential scheduling	

• Network [Steiner@RTSS10] ▷ Tasks [Craciunas@ETFA14]	

• Tasks ▷ Network [Hanzalek@ECRTS09]

Scheduling

Combined scheduling

Network model

Task model

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Sequential scheduling	

• Network [Steiner@RTSS10] ▷ Tasks [Craciunas@ETFA14]	

• Tasks ▷ Network [Hanzalek@ECRTS09]

Scheduling

Combined scheduling

Network model

Task model

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Sequential scheduling	

• Network [Steiner@RTSS10] ▷ Tasks [Craciunas@ETFA14]	

• Tasks ▷ Network [Hanzalek@ECRTS09]

Scheduling

Combined scheduling

Bus

Network model

Task model

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Sequential scheduling	

• Network [Steiner@RTSS10] ▷ Tasks [Craciunas@ETFA14]	

• Tasks ▷ Network [Hanzalek@ECRTS09]

Scheduling

Combined scheduling

Bus

Switched

Network model

Task model

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Sequential scheduling	

• Network [Steiner@RTSS10] ▷ Tasks [Craciunas@ETFA14]	

• Tasks ▷ Network [Hanzalek@ECRTS09]

Scheduling

Combined scheduling

Bus

Switched

Nonpreemptive

Network model

Task model

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Sequential scheduling	

• Network [Steiner@RTSS10] ▷ Tasks [Craciunas@ETFA14]	

• Tasks ▷ Network [Hanzalek@ECRTS09]

Scheduling

Combined scheduling

Bus

Switched

Nonpreemptive Preemptive

Network model

Task model

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Sequential scheduling	

• Network [Steiner@RTSS10] ▷ Tasks [Craciunas@ETFA14]	

• Tasks ▷ Network [Hanzalek@ECRTS09]

Scheduling

Combined scheduling

Bus

Switched

Nonpreemptive Preemptive

Network model

Task model

[Pop@CODES02]

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Sequential scheduling	

• Network [Steiner@RTSS10] ▷ Tasks [Craciunas@ETFA14]	

• Tasks ▷ Network [Hanzalek@ECRTS09]

Scheduling

Combined scheduling

Bus

Switched

Nonpreemptive Preemptive

Network model

Task model

[Pop@RealTimeSys04]
[Zeng@DAC09]

[Pop@CODES02]
[Pop@EUROMICRO99]

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Sequential scheduling	

• Network [Steiner@RTSS10] ▷ Tasks [Craciunas@ETFA14]	

• Tasks ▷ Network [Hanzalek@ECRTS09]

Scheduling

Combined scheduling

Bus

Switched

Nonpreemptive Preemptive

Network model

Task model

[Pop@RealTimeSys04]

[Zhang@ASP-DAC14]

[Zeng@DAC09]

[Pop@CODES02]
[Pop@EUROMICRO99]

[Kamieth@ETFA14]

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Sequential scheduling	

• Network [Steiner@RTSS10] ▷ Tasks [Craciunas@ETFA14]	

• Tasks ▷ Network [Hanzalek@ECRTS09]

Scheduling

Combined scheduling

Bus

Switched

Nonpreemptive Preemptive

Network model

Task model

our work

[Pop@RealTimeSys04]

[Zhang@ASP-DAC14]

[Zeng@DAC09]

[Pop@CODES02]
[Pop@EUROMICRO99]

[Kamieth@ETFA14]

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Network model

• multi-hop layer 2 switched network via full-duplex multi-speed links	

• virtual links (ARINC 664 P-7) 	

• TT-traffic class (RC [Tamas-Selicean@CODES+ISSS12], BE)	

• synchronised time (< 1 used precision)	

• link delay for each link	

• memory buffers on switches

communication periods over a multi-speed switched TTEth-
ernet network. We model the CPUs as self-links on the end-
systems and schedule virtual frames (explained below) rep-
resenting non-preemptable chunks of preemptable tt-tasks.
With this abstraction we define a set of general constraints,
allowing a Satisfiability Modulo Theories (SMT) solver to
synthesize a system wide tt-schedule. Moreover, we present
a novel incremental approach for creating tt-schedules, based
on the utilization demand bound analysis for asynchronous
tasks [3] scheduled using the earliest deadline first (EDF)
algorithm [19], which significantly improves our scalability
factor. We evaluate our approach using synthetic workloads
and show that our algorithm scales for medium to large net-
worked systems achieving guaranteed high determinism and
minimal jitter.

In Section 2, we define the networked system model, which
we later use in Section 3 to construct logical constraints that
correctly describe a combined network and task schedule. In
Section 4 we introduce two scheduling algorithms based on
SMT, which we then evaluate using synthetic benchmarks
in Section 5. We present related research in Section 6 and
conclude the paper in Section 7.

2. NETWORKED SYSTEM MODEL
TTEthernet establishes a multi-hop layer 2 switched net-

work via full-duplex multi-speed links (e.g. 100 Mbit/s, 1
Gbit/s, etc.). We formally model the networked system as
a directed graph G(V,L). The set of vertexes (V) comprises
the set of communication nodes (switches and end-systems)
while the edges (L ✓ V ⇥ V) represent the directional com-
munication links connecting the nodes. Since we consider
bi-directional physical links, we have that 8[v

a

, v
b

] 2 L)
[v

b

, v
a

] 2 L, where [v
a

, v
b

] is an ordered tuple that represents
a directed logical network link connecting vertex v

a

2 V to
v
b

2 V. In addition to the network links, we also consider
tasks running on the end-system CPUs. We model the CPU
as a directional self-link, which we call CPU link, connecting
an end-system vertex with itself.
A network or CPU link [v

a

, v
b

] between nodes v
a

2 V and
v
b

2 V is defined by the tuple

h[v
a

, v
b

].s, [v
a

, v
b

].d, [v
a

, v
b

].mt, [v
a

, v
b

].bi,

where [v
a

, v
b

].s is the speed coe�cient, [v
a

, v
b

].d is the link
delay, [v

a

, v
b

].mt is the macrotick, and [v
a

, v
b

].b is the max-
imum bu↵er constraint. In the case of a CPU link, the
macrotick represents the granularity of the time-line that the
real-time operating system (RTOS) of the respective end-
system recognizes. A typical macrotick for a time-triggered
RTOS ranges from a few hundreds of microseconds to sev-
eral milliseconds [4, p. 266]. In the case of a network link
the macrotick is the time-line granularity of the physical
link. Typically, the TTEthernet time granularity is around
60ns [16] but larger values are commonly used. The link
delay refers to either the propagation and processing delay
on the medium in case of a network link or the queuing and
software overhead for a CPU link. The speed coe�cient is
used for calculating the transmission time of the frame on a
particular physical link based on its size and the link speed,
–for a network link the speed coe�cient represents the time
it takes to transmit one byte. Considering the minimum
and maximum frame sizes in the Ethernet protocol of 84
and 1542 bytes, respectively, the frame transmission time,
for example, on a 1Gbit/sec link would be 0.672µsec and

TTE B

TTE C

TTE A
TTE-Switch 1

TTE D

TTE-Switch 2

TTE E

physical link
communication path

Figure 1: A TTEthernet network with 5 end-systems

and 2 switches.

12.336µsec, respectively. For a CPU link, the speed coef-
ficient is used to allow heterogeneous CPUs with di↵erent
clock rates, resulting in di↵erent WCETs for the same task.
The maximum bu↵er constraint represents the maximum
amount of time a frame of any size can reside in the message
queues of the transmitting node (switch or end-system).
We denote the set of all tt-tasks in the system by �. A

tt-task ⌧v

a

i

2 � running on the end-system v
a

is defined,
similar to the periodic task model from [19], by the tuple

h⌧v

a

i

.�, ⌧v

a

i

.C, ⌧v

a

i

.D, ⌧v

a

i

.T i,

where ⌧v

a

i

.� is the o↵set, ⌧v

a

i

.C is the WCET, ⌧v

a

i

.D is the
relative deadline, and ⌧v

a

i

.T is the period of the task. Note
that, a tt-task is pre-assigned to one end-system CPU and
does not migrate during run-time. Hence, all task parame-
ters are scaled according to the macrotick and speed of the
respective CPU link. We denote the set of all tasks that run
on end-system v

a

by �v

a .
We model communication through the network via the

concept of virtual links, where a virtual link is a logical
data-flow path in the network from one sender node to one
receiver node over which a tt-message is transmitted. The
concept is similar to [1] but extended to include the tt-tasks
associated with the generation and consumption of the data
running at the end-systems. We distinguish three types of
tt-tasks, namely, producer, consumer, and free tt-tasks. Pro-
ducer tasks generate messages that are being sent on the
network, consumer tasks receive messages that arrive from
the network, and free tasks have no dependency towards
the network. Note that we assume the actual instant of
sending and receiving messages occurs at the end and at
the beginning of producer and consumer tasks, respectively.
Schedulability may improve by considering the exact mo-
ment in the execution of a task where the message is sent or
received (cf. [9]).
A virtual link vl

i

2 VL from a producer task running on
end-system v

a

to a consumer task running on end-system v
b

,
routed through the nodes (i.e. switches) v

1

, v
2

, . . . , v
n�1

, v
n

is expressed, similar to [28], as

vl
i

= [[v
a

, v
a

], [v
a

, v
1

], [v
1

, v
2

], . . . , [v
n�1

, v
n

], [v
n

, v
b

], [v
b

, v
b

]].

Additionally vl
i

.max latency denotes the maximum allowed
latency between the start of the producer task and the end of
the consumer task. For communicating tasks, a virtual link
is composed by the path through the network and the two
end-system CPU links [v

a

, v
a

] and [v
b

, v
b

]. For a free task
⌧v

a

i

2 �, a virtual link vl
i

is created with vl
i

= [[v
a

, v
a

]].
Our goal is to schedule virtual links considering the task-

and network-levels combined. Hence, we take both the tt-
message that is sent over the network and the computation
time of both producer and consumer tt-tasks and unify these
through the concept of frames.

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Task model

• periodic asynchronous TT-tasks (offset , wcet C, period T, deadline D)	

• static time-driven schedule with preemption	

• 3 types of tasks (producer, consumer, free)	

• macrotick on ES (usec - ms)	

• communication at beginning/end of consumer/producer ([Derler@CIT10])	

• end-to-end latency, dependencies between tasks

�

0 168

(0, 4, 16, 16)
(3, 3, 8, 6)
(5, 4, 16, 6)
(12, 2, 16, 3)

0 168

CPU

Network  
Link

free

free

consumer
producer

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Network links

CPU self-links

Networked system model

[va, va]

[va, vb]

Network

(speed, link delay, macrotick, memory buffer)

8[va, vb] 2 L) [vb, va] 2 L
G(V,L) L ✓ V ⇥ V

vli = [[va, va], [va, v1], [v1, v2], . . . , [vn�1, vn], [vn, vb], [vb, vb]].

Virtual link - dataflow from one producer to one receiver

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Frames

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Frames

Communication Tasks

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Frames

Communication Tasks(offset, period, length on link)
macrotick

Frames

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Frames

Communication Tasks(offset, period, length on link)
macrotick

Frames

Link 1

Link 2

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Frames

Communication Tasks(offset, period, length on link)
macrotick

Frames

Link 1

Link 2

2

0 8

1 21

1 1

2 2 2

Task 1

Task 2

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Scheduling problem

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Scheduling problem

find offsets for the frames (on links and virtual task frames)

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Scheduling problem

reduces to finding a solution for a set of constraints	

• frame constraints	

• link constraints	

• virtual link constraints	

• memory constraints	

• end-to-end latency constraints	

• precedence constraints

find offsets for the frames (on links and virtual task frames)

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Scheduling problem

reduces to finding a solution for a set of constraints	

• frame constraints	

• link constraints	

• virtual link constraints	

• memory constraints	

• end-to-end latency constraints	

• precedence constraints

find offsets for the frames (on links and virtual task frames)

NP-complete

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Frame constraints

0 8

Network Link

Period

�

0 8

CPU Link

Period

�
a d

0 8

Virtual frames

Period

a d

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Frame constraints

0 8

Network Link

Period

�

0 8

CPU Link

Period

�
a d

0 8

Virtual frames

Period

a d

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Frame constraints

0 8

Network Link

Period

�

0 8

CPU Link

Period

�
a d

0 8

Virtual frames

Period

a d

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Frame constraints

0 8

Network Link

Period

�

0 8

CPU Link

Period

�
a d

0 8

Virtual frames

Period

a d

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Link constraints

Link

0 4 6 8 12

(1, 4) (1, 6)

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Link constraints

Link

0 4 6 8 12

(1, 4) (1, 6)

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Link constraints

Link

0 4 6 8 12

(1, 4) (1, 6)

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Link constraints

Link

0 4 6 8 12

(1, 4) (1, 6)

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Link constraints

Link

0 4 6 8 12

no two frames scheduled on the same link may overlap

(1, 4) (1, 6)

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Virtual link constraints
CPU 1

0 12

Link

0 12

CPU 2

0 12

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Virtual link constraints
CPU 1

0 12

Link

0 12

CPU 2

0 12

3.3 Virtual link constraints
We introduce virtual link constraints which describe the

sequential nature of a communication from a producer task
to a consumer task. The generic condition that applies for
network as well as for CPU links is that frames on sequen-
tial links in the communication path have to be scheduled
sequentially on the time-line. Virtual frames of producer or
consumer tasks are special cases of the above condition. All
virtual frames of a producer task must be scheduled before
the scheduled window on the first link in the communica-
tion path. Conversely, all virtual frames of the consumer
task must be scheduled after the scheduled window on the
last network link in the communication path.

End-to-end communication with low latency and bounded
jitter is only possible if all network nodes (which have in-
dependent clock sources) are synchronized with each-other
in the time domain. TTEthernet provides a fault-tolerant
clock synchronization method [31] encompassing the whole
network which ensures clock synchronization. On a real net-
work, the precision achieved by the synchronization protocol
is subject to jitter in the microsecond domain. Hence, we
also consider, similar to [35], the synchronization jitter which
is a global constant and describes the maximum di↵erence
between the local clocks of any two nodes in the network.
We denote the synchronization jitter (also called network
precision) with �, where typically � ⇡ 1µsec [15, p. 186].

8vl
i

2 VL, 8[v
a

, v
x

], [v
x

, v
b

] 2 vl
i

:

[v
x

, v
b

].mt⇥ f
[v

x

,v

b

]

i,1

.�� [v
a

, v
x

].d� � �

[v
a

, v
x

].mt⇥ (last(F [v

a

,v

x

]

i

).�+ last(F [v

a

,v

x

]

i

).L).

The constraint expresses that, for a frame, the di↵erence
between the start of the transmission window on one link
and the end of the transmission window on the precedent
link has to be greater than the hop delay for that link plus
the precision for the entire network.

3.4 End-to-End Latency constraints
Let src(vl

i

) and dest(vl
i

) denote the CPU links on which
the producer task and, respectively, the consumer task of
virtual link vl

i

are scheduled on. We introduce latency con-
straints that describe the maximum latency of a communi-
cation from a producer task to a consumer task, namely

8vl
i

2 VL :

dest(vl
i

).mt⇥ (last(Fdest(vl

i

)

i

).�+ last(Fdest(vl

i

)

i

).L) 

src(vl
i

).mt⇥ f
src(vl

i

)

i,1

.�+ vl
i

.max latency.

In essence, the condition states that the di↵erence between
the end of the last chunk of the consumer task and the start
of the first chunk of the producer task has to be smaller
than or equal to the maximum end-to-end latency allowed.
In this paper we consider the maximum end-to-end latency
to be smaller than or equal to the message period (which is
the same as the period of the associated tasks).

3.5 Task constraints
For any sequence of virtual frames scheduled on a CPU

link, the first virtual frame has to start after the o↵set of the
task and the last virtual frame has to be scheduled before

the deadline of the task. Hence, we have

8v
a

2 V, 8⌧v

a

i

2 �v

a :
⇣
f
[v

a

,v

a

]

i,1

.� � ⌧v

a

i

.�
⌘
^
⇣
last(F [v

a

,v

a

]

i

).�  ⌧v

a

i

.D � ⌧v

a

i

.C
⌘
.

3.6 Virtual frame sequence constraints
For a CPU link, we check in the condition in Section 3.2

that the scheduling windows of virtual frames generated by
di↵erent tasks do not overlap. Additionally, we have to check
that virtual frames generated by the same task do not over-
lap in the time domain. This condition can be expressed
similar to the condition in Section 3.2, however, we express
it, without losing generality, in terms of the ordering of the
virtual frame set.

8v
a

2 V, 8⌧v

a

i

2 �v

a , 8j 2
h
1,
⇣���F [v

a

,v

a

]

i

���� 1
⌘i

:

f
[v

a

,v

a

]

i,j+1

.� � f
[v

a

,v

a

]

i,j

.�+ f
[v

a

,v

a

]

i,j

.L.

3.7 Task precedence constraints
Task dependencies are usually expressed as precedence

constraints [5], e.g., if task ⌧v

a

i

and ⌧
v

b

j

have precedence con-
straints (⌧v

a

i

� ⌧
v

b

j

) then ⌧v

a

i

has to finish executing before
⌧
v

b

j

starts. Even though these dependencies arise typically
between tasks co-existing on the same CPU, we generalize
dependencies between tasks executing on any end-system.
Task dependencies are partially expressed in [28] as frame
dependencies in the sense that one frame is scheduled before
another frame, which can be used to specify aspects of the
existing task schedule. We introduce constraints for simple
task precedences in our model as follows

⌧v

a

i

� ⌧
v

b

j

) [v
b

, v
b

].mt⇥ f
[v

b

,v

b

]

j,1

.� �

[v
a

, v
a

].mt⇥ (last(F [v

a

,v

a

]

i

).�+ last(F [v

a

,v

a

]

i

).L).

Note that both tasks must have the same period or “rate”.
Multi-rate precedence constraints (extended precedences as
they are called in [10]) are subject for future work.

3.8 Memory constraints
The time-triggered paradigm enables us to define the

memory constraints for the switches and end-system nodes
as an upper bound on the time that a frame can reside inside
the transmitting queue of a node, i.e., the time a frame can
logically remain on a CPU or network link.

8vl
i

2 VL, 8[v
a

, v
x

], [v
x

, v
b

] 2 vl
i

:

[v
x

, v
b

].mt⇥ f
[v

x

,v

b

]

i,1

.�� [v
a

, v
x

].mt⇥ f
[v

a

,v

x

]

i,1

.�  [v
a

, v
x

].b.

Note that an alternative method to directly constrain the
memory utilization in terms of frame and bu↵er lengths im-
plies a non-trivial extension that may require quantifiers in
the logical formulas. The added level of expressiveness, how-
ever, does not justify the inherent increase in complexity and
the required added run-time to solve the problem.

4. SMT-BASED CO-SYNTHESIS
Satisfiability Modulo Theories (SMT) checks the satisfia-

bility of logic formulas in first-order formulation with regard
to certain background theories like linear integer arithmetic
(LA(Z)) or bit-vectors (BV) [2, 27]. A first-order formula
uses variables as well as quantifiers, functional and predicate
symbols, and logical operators [21]. Scheduling problems are

3.3 Virtual link constraints
We introduce virtual link constraints which describe the

sequential nature of a communication from a producer task
to a consumer task. The generic condition that applies for
network as well as for CPU links is that frames on sequen-
tial links in the communication path have to be scheduled
sequentially on the time-line. Virtual frames of producer or
consumer tasks are special cases of the above condition. All
virtual frames of a producer task must be scheduled before
the scheduled window on the first link in the communica-
tion path. Conversely, all virtual frames of the consumer
task must be scheduled after the scheduled window on the
last network link in the communication path.

End-to-end communication with low latency and bounded
jitter is only possible if all network nodes (which have in-
dependent clock sources) are synchronized with each-other
in the time domain. TTEthernet provides a fault-tolerant
clock synchronization method [31] encompassing the whole
network which ensures clock synchronization. On a real net-
work, the precision achieved by the synchronization protocol
is subject to jitter in the microsecond domain. Hence, we
also consider, similar to [35], the synchronization jitter which
is a global constant and describes the maximum di↵erence
between the local clocks of any two nodes in the network.
We denote the synchronization jitter (also called network
precision) with �, where typically � ⇡ 1µsec [15, p. 186].

8vl
i

2 VL, 8[v
a

, v
x

], [v
x

, v
b

] 2 vl
i

:

[v
x

, v
b

].mt⇥ f
[v

x

,v

b

]

i,1

.�� [v
a

, v
x

].d� � �

[v
a

, v
x

].mt⇥ (last(F [v

a

,v

x

]

i

).�+ last(F [v

a

,v

x

]

i

).L).

The constraint expresses that, for a frame, the di↵erence
between the start of the transmission window on one link
and the end of the transmission window on the precedent
link has to be greater than the hop delay for that link plus
the precision for the entire network.

3.4 End-to-End Latency constraints
Let src(vl

i

) and dest(vl
i

) denote the CPU links on which
the producer task and, respectively, the consumer task of
virtual link vl

i

are scheduled on. We introduce latency con-
straints that describe the maximum latency of a communi-
cation from a producer task to a consumer task, namely

8vl
i

2 VL :

dest(vl
i

).mt⇥ (last(Fdest(vl

i

)

i

).�+ last(Fdest(vl

i

)

i

).L) 

src(vl
i

).mt⇥ f
src(vl

i

)

i,1

.�+ vl
i

.max latency.

In essence, the condition states that the di↵erence between
the end of the last chunk of the consumer task and the start
of the first chunk of the producer task has to be smaller
than or equal to the maximum end-to-end latency allowed.
In this paper we consider the maximum end-to-end latency
to be smaller than or equal to the message period (which is
the same as the period of the associated tasks).

3.5 Task constraints
For any sequence of virtual frames scheduled on a CPU

link, the first virtual frame has to start after the o↵set of the
task and the last virtual frame has to be scheduled before

the deadline of the task. Hence, we have

8v
a

2 V, 8⌧v

a

i

2 �v

a :
⇣
f
[v

a

,v

a

]

i,1

.� � ⌧v

a

i

.�
⌘
^
⇣
last(F [v

a

,v

a

]

i

).�  ⌧v

a

i

.D � ⌧v

a

i

.C
⌘
.

3.6 Virtual frame sequence constraints
For a CPU link, we check in the condition in Section 3.2

that the scheduling windows of virtual frames generated by
di↵erent tasks do not overlap. Additionally, we have to check
that virtual frames generated by the same task do not over-
lap in the time domain. This condition can be expressed
similar to the condition in Section 3.2, however, we express
it, without losing generality, in terms of the ordering of the
virtual frame set.

8v
a

2 V, 8⌧v

a

i

2 �v

a , 8j 2
h
1,
⇣���F [v

a

,v

a

]

i

���� 1
⌘i

:

f
[v

a

,v

a

]

i,j+1

.� � f
[v

a

,v

a

]

i,j

.�+ f
[v

a

,v

a

]

i,j

.L.

3.7 Task precedence constraints
Task dependencies are usually expressed as precedence

constraints [5], e.g., if task ⌧v

a

i

and ⌧
v

b

j

have precedence con-
straints (⌧v

a

i

� ⌧
v

b

j

) then ⌧v

a

i

has to finish executing before
⌧
v

b

j

starts. Even though these dependencies arise typically
between tasks co-existing on the same CPU, we generalize
dependencies between tasks executing on any end-system.
Task dependencies are partially expressed in [28] as frame
dependencies in the sense that one frame is scheduled before
another frame, which can be used to specify aspects of the
existing task schedule. We introduce constraints for simple
task precedences in our model as follows

⌧v

a

i

� ⌧
v

b

j

) [v
b

, v
b

].mt⇥ f
[v

b

,v

b

]

j,1

.� �

[v
a

, v
a

].mt⇥ (last(F [v

a

,v

a

]

i

).�+ last(F [v

a

,v

a

]

i

).L).

Note that both tasks must have the same period or “rate”.
Multi-rate precedence constraints (extended precedences as
they are called in [10]) are subject for future work.

3.8 Memory constraints
The time-triggered paradigm enables us to define the

memory constraints for the switches and end-system nodes
as an upper bound on the time that a frame can reside inside
the transmitting queue of a node, i.e., the time a frame can
logically remain on a CPU or network link.

8vl
i

2 VL, 8[v
a

, v
x

], [v
x

, v
b

] 2 vl
i

:

[v
x

, v
b

].mt⇥ f
[v

x

,v

b

]

i,1

.�� [v
a

, v
x

].mt⇥ f
[v

a

,v

x

]

i,1

.�  [v
a

, v
x

].b.

Note that an alternative method to directly constrain the
memory utilization in terms of frame and bu↵er lengths im-
plies a non-trivial extension that may require quantifiers in
the logical formulas. The added level of expressiveness, how-
ever, does not justify the inherent increase in complexity and
the required added run-time to solve the problem.

4. SMT-BASED CO-SYNTHESIS
Satisfiability Modulo Theories (SMT) checks the satisfia-

bility of logic formulas in first-order formulation with regard
to certain background theories like linear integer arithmetic
(LA(Z)) or bit-vectors (BV) [2, 27]. A first-order formula
uses variables as well as quantifiers, functional and predicate
symbols, and logical operators [21]. Scheduling problems are

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

E2E latency constraints
CPU 1

0 12

Link

0 12

0 12

CPU 2

3.3 Virtual link constraints
We introduce virtual link constraints which describe the

sequential nature of a communication from a producer task
to a consumer task. The generic condition that applies for
network as well as for CPU links is that frames on sequen-
tial links in the communication path have to be scheduled
sequentially on the time-line. Virtual frames of producer or
consumer tasks are special cases of the above condition. All
virtual frames of a producer task must be scheduled before
the scheduled window on the first link in the communica-
tion path. Conversely, all virtual frames of the consumer
task must be scheduled after the scheduled window on the
last network link in the communication path.

End-to-end communication with low latency and bounded
jitter is only possible if all network nodes (which have in-
dependent clock sources) are synchronized with each-other
in the time domain. TTEthernet provides a fault-tolerant
clock synchronization method [31] encompassing the whole
network which ensures clock synchronization. On a real net-
work, the precision achieved by the synchronization protocol
is subject to jitter in the microsecond domain. Hence, we
also consider, similar to [35], the synchronization jitter which
is a global constant and describes the maximum di↵erence
between the local clocks of any two nodes in the network.
We denote the synchronization jitter (also called network
precision) with �, where typically � ⇡ 1µsec [15, p. 186].

8vl
i

2 VL, 8[v
a

, v
x

], [v
x

, v
b

] 2 vl
i

:

[v
x

, v
b

].mt⇥ f
[v

x

,v

b

]

i,1

.�� [v
a

, v
x

].d� � �

[v
a

, v
x

].mt⇥ (last(F [v

a

,v

x

]

i

).�+ last(F [v

a

,v

x

]

i

).L).

The constraint expresses that, for a frame, the di↵erence
between the start of the transmission window on one link
and the end of the transmission window on the precedent
link has to be greater than the hop delay for that link plus
the precision for the entire network.

3.4 End-to-End Latency constraints
Let src(vl

i

) and dest(vl
i

) denote the CPU links on which
the producer task and, respectively, the consumer task of
virtual link vl

i

are scheduled on. We introduce latency con-
straints that describe the maximum latency of a communi-
cation from a producer task to a consumer task, namely

8vl
i

2 VL :

dest(vl
i

).mt⇥ (last(Fdest(vl

i

)

i

).�+ last(Fdest(vl

i

)

i

).L) 

src(vl
i

).mt⇥ f
src(vl

i

)

i,1

.�+ vl
i

.max latency.

In essence, the condition states that the di↵erence between
the end of the last chunk of the consumer task and the start
of the first chunk of the producer task has to be smaller
than or equal to the maximum end-to-end latency allowed.
In this paper we consider the maximum end-to-end latency
to be smaller than or equal to the message period (which is
the same as the period of the associated tasks).

3.5 Task constraints
For any sequence of virtual frames scheduled on a CPU

link, the first virtual frame has to start after the o↵set of the
task and the last virtual frame has to be scheduled before

the deadline of the task. Hence, we have

8v
a

2 V, 8⌧v

a

i

2 �v

a :
⇣
f
[v

a

,v

a

]

i,1

.� � ⌧v

a

i

.�
⌘
^
⇣
last(F [v

a

,v

a

]

i

).�  ⌧v

a

i

.D � ⌧v

a

i

.C
⌘
.

3.6 Virtual frame sequence constraints
For a CPU link, we check in the condition in Section 3.2

that the scheduling windows of virtual frames generated by
di↵erent tasks do not overlap. Additionally, we have to check
that virtual frames generated by the same task do not over-
lap in the time domain. This condition can be expressed
similar to the condition in Section 3.2, however, we express
it, without losing generality, in terms of the ordering of the
virtual frame set.

8v
a

2 V, 8⌧v

a

i

2 �v

a , 8j 2
h
1,
⇣���F [v

a

,v

a

]

i

���� 1
⌘i

:

f
[v

a

,v

a

]

i,j+1

.� � f
[v

a

,v

a

]

i,j

.�+ f
[v

a

,v

a

]

i,j

.L.

3.7 Task precedence constraints
Task dependencies are usually expressed as precedence

constraints [5], e.g., if task ⌧v

a

i

and ⌧
v

b

j

have precedence con-
straints (⌧v

a

i

� ⌧
v

b

j

) then ⌧v

a

i

has to finish executing before
⌧
v

b

j

starts. Even though these dependencies arise typically
between tasks co-existing on the same CPU, we generalize
dependencies between tasks executing on any end-system.
Task dependencies are partially expressed in [28] as frame
dependencies in the sense that one frame is scheduled before
another frame, which can be used to specify aspects of the
existing task schedule. We introduce constraints for simple
task precedences in our model as follows

⌧v

a

i

� ⌧
v

b

j

) [v
b

, v
b

].mt⇥ f
[v

b

,v

b

]

j,1

.� �

[v
a

, v
a

].mt⇥ (last(F [v

a

,v

a

]

i

).�+ last(F [v

a

,v

a

]

i

).L).

Note that both tasks must have the same period or “rate”.
Multi-rate precedence constraints (extended precedences as
they are called in [10]) are subject for future work.

3.8 Memory constraints
The time-triggered paradigm enables us to define the

memory constraints for the switches and end-system nodes
as an upper bound on the time that a frame can reside inside
the transmitting queue of a node, i.e., the time a frame can
logically remain on a CPU or network link.

8vl
i

2 VL, 8[v
a

, v
x

], [v
x

, v
b

] 2 vl
i

:

[v
x

, v
b

].mt⇥ f
[v

x

,v

b

]

i,1

.�� [v
a

, v
x

].mt⇥ f
[v

a

,v

x

]

i,1

.�  [v
a

, v
x

].b.

Note that an alternative method to directly constrain the
memory utilization in terms of frame and bu↵er lengths im-
plies a non-trivial extension that may require quantifiers in
the logical formulas. The added level of expressiveness, how-
ever, does not justify the inherent increase in complexity and
the required added run-time to solve the problem.

4. SMT-BASED CO-SYNTHESIS
Satisfiability Modulo Theories (SMT) checks the satisfia-

bility of logic formulas in first-order formulation with regard
to certain background theories like linear integer arithmetic
(LA(Z)) or bit-vectors (BV) [2, 27]. A first-order formula
uses variables as well as quantifiers, functional and predicate
symbols, and logical operators [21]. Scheduling problems are

3.3 Virtual link constraints
We introduce virtual link constraints which describe the

sequential nature of a communication from a producer task
to a consumer task. The generic condition that applies for
network as well as for CPU links is that frames on sequen-
tial links in the communication path have to be scheduled
sequentially on the time-line. Virtual frames of producer or
consumer tasks are special cases of the above condition. All
virtual frames of a producer task must be scheduled before
the scheduled window on the first link in the communica-
tion path. Conversely, all virtual frames of the consumer
task must be scheduled after the scheduled window on the
last network link in the communication path.

End-to-end communication with low latency and bounded
jitter is only possible if all network nodes (which have in-
dependent clock sources) are synchronized with each-other
in the time domain. TTEthernet provides a fault-tolerant
clock synchronization method [31] encompassing the whole
network which ensures clock synchronization. On a real net-
work, the precision achieved by the synchronization protocol
is subject to jitter in the microsecond domain. Hence, we
also consider, similar to [35], the synchronization jitter which
is a global constant and describes the maximum di↵erence
between the local clocks of any two nodes in the network.
We denote the synchronization jitter (also called network
precision) with �, where typically � ⇡ 1µsec [15, p. 186].

8vl
i

2 VL, 8[v
a

, v
x

], [v
x

, v
b

] 2 vl
i

:

[v
x

, v
b

].mt⇥ f
[v

x

,v

b

]

i,1

.�� [v
a

, v
x

].d� � �

[v
a

, v
x

].mt⇥ (last(F [v

a

,v

x

]

i

).�+ last(F [v

a

,v

x

]

i

).L).

The constraint expresses that, for a frame, the di↵erence
between the start of the transmission window on one link
and the end of the transmission window on the precedent
link has to be greater than the hop delay for that link plus
the precision for the entire network.

3.4 End-to-End Latency constraints
Let src(vl

i

) and dest(vl
i

) denote the CPU links on which
the producer task and, respectively, the consumer task of
virtual link vl

i

are scheduled on. We introduce latency con-
straints that describe the maximum latency of a communi-
cation from a producer task to a consumer task, namely

8vl
i

2 VL :

dest(vl
i

).mt⇥ (last(Fdest(vl

i

)

i

).�+ last(Fdest(vl

i

)

i

).L) 

src(vl
i

).mt⇥ f
src(vl

i

)

i,1

.�+ vl
i

.max latency.

In essence, the condition states that the di↵erence between
the end of the last chunk of the consumer task and the start
of the first chunk of the producer task has to be smaller
than or equal to the maximum end-to-end latency allowed.
In this paper we consider the maximum end-to-end latency
to be smaller than or equal to the message period (which is
the same as the period of the associated tasks).

3.5 Task constraints
For any sequence of virtual frames scheduled on a CPU

link, the first virtual frame has to start after the o↵set of the
task and the last virtual frame has to be scheduled before

the deadline of the task. Hence, we have

8v
a

2 V, 8⌧v

a

i

2 �v

a :
⇣
f
[v

a

,v

a

]

i,1

.� � ⌧v

a

i

.�
⌘
^
⇣
last(F [v

a

,v

a

]

i

).�  ⌧v

a

i

.D � ⌧v

a

i

.C
⌘
.

3.6 Virtual frame sequence constraints
For a CPU link, we check in the condition in Section 3.2

that the scheduling windows of virtual frames generated by
di↵erent tasks do not overlap. Additionally, we have to check
that virtual frames generated by the same task do not over-
lap in the time domain. This condition can be expressed
similar to the condition in Section 3.2, however, we express
it, without losing generality, in terms of the ordering of the
virtual frame set.

8v
a

2 V, 8⌧v

a

i

2 �v

a , 8j 2
h
1,
⇣���F [v

a

,v

a

]

i

���� 1
⌘i

:

f
[v

a

,v

a

]

i,j+1

.� � f
[v

a

,v

a

]

i,j

.�+ f
[v

a

,v

a

]

i,j

.L.

3.7 Task precedence constraints
Task dependencies are usually expressed as precedence

constraints [5], e.g., if task ⌧v

a

i

and ⌧
v

b

j

have precedence con-
straints (⌧v

a

i

� ⌧
v

b

j

) then ⌧v

a

i

has to finish executing before
⌧
v

b

j

starts. Even though these dependencies arise typically
between tasks co-existing on the same CPU, we generalize
dependencies between tasks executing on any end-system.
Task dependencies are partially expressed in [28] as frame
dependencies in the sense that one frame is scheduled before
another frame, which can be used to specify aspects of the
existing task schedule. We introduce constraints for simple
task precedences in our model as follows

⌧v

a

i

� ⌧
v

b

j

) [v
b

, v
b

].mt⇥ f
[v

b

,v

b

]

j,1

.� �

[v
a

, v
a

].mt⇥ (last(F [v

a

,v

a

]

i

).�+ last(F [v

a

,v

a

]

i

).L).

Note that both tasks must have the same period or “rate”.
Multi-rate precedence constraints (extended precedences as
they are called in [10]) are subject for future work.

3.8 Memory constraints
The time-triggered paradigm enables us to define the

memory constraints for the switches and end-system nodes
as an upper bound on the time that a frame can reside inside
the transmitting queue of a node, i.e., the time a frame can
logically remain on a CPU or network link.

8vl
i

2 VL, 8[v
a

, v
x

], [v
x

, v
b

] 2 vl
i

:

[v
x

, v
b

].mt⇥ f
[v

x

,v

b

]

i,1

.�� [v
a

, v
x

].mt⇥ f
[v

a

,v

x

]

i,1

.�  [v
a

, v
x

].b.

Note that an alternative method to directly constrain the
memory utilization in terms of frame and bu↵er lengths im-
plies a non-trivial extension that may require quantifiers in
the logical formulas. The added level of expressiveness, how-
ever, does not justify the inherent increase in complexity and
the required added run-time to solve the problem.

4. SMT-BASED CO-SYNTHESIS
Satisfiability Modulo Theories (SMT) checks the satisfia-

bility of logic formulas in first-order formulation with regard
to certain background theories like linear integer arithmetic
(LA(Z)) or bit-vectors (BV) [2, 27]. A first-order formula
uses variables as well as quantifiers, functional and predicate
symbols, and logical operators [21]. Scheduling problems are

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

E2E latency constraints
CPU 1

0 12

Link

0 12

0 12

maximum allowed e2e latency

CPU 2

3.3 Virtual link constraints
We introduce virtual link constraints which describe the

sequential nature of a communication from a producer task
to a consumer task. The generic condition that applies for
network as well as for CPU links is that frames on sequen-
tial links in the communication path have to be scheduled
sequentially on the time-line. Virtual frames of producer or
consumer tasks are special cases of the above condition. All
virtual frames of a producer task must be scheduled before
the scheduled window on the first link in the communica-
tion path. Conversely, all virtual frames of the consumer
task must be scheduled after the scheduled window on the
last network link in the communication path.

End-to-end communication with low latency and bounded
jitter is only possible if all network nodes (which have in-
dependent clock sources) are synchronized with each-other
in the time domain. TTEthernet provides a fault-tolerant
clock synchronization method [31] encompassing the whole
network which ensures clock synchronization. On a real net-
work, the precision achieved by the synchronization protocol
is subject to jitter in the microsecond domain. Hence, we
also consider, similar to [35], the synchronization jitter which
is a global constant and describes the maximum di↵erence
between the local clocks of any two nodes in the network.
We denote the synchronization jitter (also called network
precision) with �, where typically � ⇡ 1µsec [15, p. 186].

8vl
i

2 VL, 8[v
a

, v
x

], [v
x

, v
b

] 2 vl
i

:

[v
x

, v
b

].mt⇥ f
[v

x

,v

b

]

i,1

.�� [v
a

, v
x

].d� � �

[v
a

, v
x

].mt⇥ (last(F [v

a

,v

x

]

i

).�+ last(F [v

a

,v

x

]

i

).L).

The constraint expresses that, for a frame, the di↵erence
between the start of the transmission window on one link
and the end of the transmission window on the precedent
link has to be greater than the hop delay for that link plus
the precision for the entire network.

3.4 End-to-End Latency constraints
Let src(vl

i

) and dest(vl
i

) denote the CPU links on which
the producer task and, respectively, the consumer task of
virtual link vl

i

are scheduled on. We introduce latency con-
straints that describe the maximum latency of a communi-
cation from a producer task to a consumer task, namely

8vl
i

2 VL :

dest(vl
i

).mt⇥ (last(Fdest(vl

i

)

i

).�+ last(Fdest(vl

i

)

i

).L) 

src(vl
i

).mt⇥ f
src(vl

i

)

i,1

.�+ vl
i

.max latency.

In essence, the condition states that the di↵erence between
the end of the last chunk of the consumer task and the start
of the first chunk of the producer task has to be smaller
than or equal to the maximum end-to-end latency allowed.
In this paper we consider the maximum end-to-end latency
to be smaller than or equal to the message period (which is
the same as the period of the associated tasks).

3.5 Task constraints
For any sequence of virtual frames scheduled on a CPU

link, the first virtual frame has to start after the o↵set of the
task and the last virtual frame has to be scheduled before

the deadline of the task. Hence, we have

8v
a

2 V, 8⌧v

a

i

2 �v

a :
⇣
f
[v

a

,v

a

]

i,1

.� � ⌧v

a

i

.�
⌘
^
⇣
last(F [v

a

,v

a

]

i

).�  ⌧v

a

i

.D � ⌧v

a

i

.C
⌘
.

3.6 Virtual frame sequence constraints
For a CPU link, we check in the condition in Section 3.2

that the scheduling windows of virtual frames generated by
di↵erent tasks do not overlap. Additionally, we have to check
that virtual frames generated by the same task do not over-
lap in the time domain. This condition can be expressed
similar to the condition in Section 3.2, however, we express
it, without losing generality, in terms of the ordering of the
virtual frame set.

8v
a

2 V, 8⌧v

a

i

2 �v

a , 8j 2
h
1,
⇣���F [v

a

,v

a

]

i

���� 1
⌘i

:

f
[v

a

,v

a

]

i,j+1

.� � f
[v

a

,v

a

]

i,j

.�+ f
[v

a

,v

a

]

i,j

.L.

3.7 Task precedence constraints
Task dependencies are usually expressed as precedence

constraints [5], e.g., if task ⌧v

a

i

and ⌧
v

b

j

have precedence con-
straints (⌧v

a

i

� ⌧
v

b

j

) then ⌧v

a

i

has to finish executing before
⌧
v

b

j

starts. Even though these dependencies arise typically
between tasks co-existing on the same CPU, we generalize
dependencies between tasks executing on any end-system.
Task dependencies are partially expressed in [28] as frame
dependencies in the sense that one frame is scheduled before
another frame, which can be used to specify aspects of the
existing task schedule. We introduce constraints for simple
task precedences in our model as follows

⌧v

a

i

� ⌧
v

b

j

) [v
b

, v
b

].mt⇥ f
[v

b

,v

b

]

j,1

.� �

[v
a

, v
a

].mt⇥ (last(F [v

a

,v

a

]

i

).�+ last(F [v

a

,v

a

]

i

).L).

Note that both tasks must have the same period or “rate”.
Multi-rate precedence constraints (extended precedences as
they are called in [10]) are subject for future work.

3.8 Memory constraints
The time-triggered paradigm enables us to define the

memory constraints for the switches and end-system nodes
as an upper bound on the time that a frame can reside inside
the transmitting queue of a node, i.e., the time a frame can
logically remain on a CPU or network link.

8vl
i

2 VL, 8[v
a

, v
x

], [v
x

, v
b

] 2 vl
i

:

[v
x

, v
b

].mt⇥ f
[v

x

,v

b

]

i,1

.�� [v
a

, v
x

].mt⇥ f
[v

a

,v

x

]

i,1

.�  [v
a

, v
x

].b.

Note that an alternative method to directly constrain the
memory utilization in terms of frame and bu↵er lengths im-
plies a non-trivial extension that may require quantifiers in
the logical formulas. The added level of expressiveness, how-
ever, does not justify the inherent increase in complexity and
the required added run-time to solve the problem.

4. SMT-BASED CO-SYNTHESIS
Satisfiability Modulo Theories (SMT) checks the satisfia-

bility of logic formulas in first-order formulation with regard
to certain background theories like linear integer arithmetic
(LA(Z)) or bit-vectors (BV) [2, 27]. A first-order formula
uses variables as well as quantifiers, functional and predicate
symbols, and logical operators [21]. Scheduling problems are

3.3 Virtual link constraints
We introduce virtual link constraints which describe the

sequential nature of a communication from a producer task
to a consumer task. The generic condition that applies for
network as well as for CPU links is that frames on sequen-
tial links in the communication path have to be scheduled
sequentially on the time-line. Virtual frames of producer or
consumer tasks are special cases of the above condition. All
virtual frames of a producer task must be scheduled before
the scheduled window on the first link in the communica-
tion path. Conversely, all virtual frames of the consumer
task must be scheduled after the scheduled window on the
last network link in the communication path.

End-to-end communication with low latency and bounded
jitter is only possible if all network nodes (which have in-
dependent clock sources) are synchronized with each-other
in the time domain. TTEthernet provides a fault-tolerant
clock synchronization method [31] encompassing the whole
network which ensures clock synchronization. On a real net-
work, the precision achieved by the synchronization protocol
is subject to jitter in the microsecond domain. Hence, we
also consider, similar to [35], the synchronization jitter which
is a global constant and describes the maximum di↵erence
between the local clocks of any two nodes in the network.
We denote the synchronization jitter (also called network
precision) with �, where typically � ⇡ 1µsec [15, p. 186].

8vl
i

2 VL, 8[v
a

, v
x

], [v
x

, v
b

] 2 vl
i

:

[v
x

, v
b

].mt⇥ f
[v

x

,v

b

]

i,1

.�� [v
a

, v
x

].d� � �

[v
a

, v
x

].mt⇥ (last(F [v

a

,v

x

]

i

).�+ last(F [v

a

,v

x

]

i

).L).

The constraint expresses that, for a frame, the di↵erence
between the start of the transmission window on one link
and the end of the transmission window on the precedent
link has to be greater than the hop delay for that link plus
the precision for the entire network.

3.4 End-to-End Latency constraints
Let src(vl

i

) and dest(vl
i

) denote the CPU links on which
the producer task and, respectively, the consumer task of
virtual link vl

i

are scheduled on. We introduce latency con-
straints that describe the maximum latency of a communi-
cation from a producer task to a consumer task, namely

8vl
i

2 VL :

dest(vl
i

).mt⇥ (last(Fdest(vl

i

)

i

).�+ last(Fdest(vl

i

)

i

).L) 

src(vl
i

).mt⇥ f
src(vl

i

)

i,1

.�+ vl
i

.max latency.

In essence, the condition states that the di↵erence between
the end of the last chunk of the consumer task and the start
of the first chunk of the producer task has to be smaller
than or equal to the maximum end-to-end latency allowed.
In this paper we consider the maximum end-to-end latency
to be smaller than or equal to the message period (which is
the same as the period of the associated tasks).

3.5 Task constraints
For any sequence of virtual frames scheduled on a CPU

link, the first virtual frame has to start after the o↵set of the
task and the last virtual frame has to be scheduled before

the deadline of the task. Hence, we have

8v
a

2 V, 8⌧v

a

i

2 �v

a :
⇣
f
[v

a

,v

a

]

i,1

.� � ⌧v

a

i

.�
⌘
^
⇣
last(F [v

a

,v

a

]

i

).�  ⌧v

a

i

.D � ⌧v

a

i

.C
⌘
.

3.6 Virtual frame sequence constraints
For a CPU link, we check in the condition in Section 3.2

that the scheduling windows of virtual frames generated by
di↵erent tasks do not overlap. Additionally, we have to check
that virtual frames generated by the same task do not over-
lap in the time domain. This condition can be expressed
similar to the condition in Section 3.2, however, we express
it, without losing generality, in terms of the ordering of the
virtual frame set.

8v
a

2 V, 8⌧v

a

i

2 �v

a , 8j 2
h
1,
⇣���F [v

a

,v

a

]

i

���� 1
⌘i

:

f
[v

a

,v

a

]

i,j+1

.� � f
[v

a

,v

a

]

i,j

.�+ f
[v

a

,v

a

]

i,j

.L.

3.7 Task precedence constraints
Task dependencies are usually expressed as precedence

constraints [5], e.g., if task ⌧v

a

i

and ⌧
v

b

j

have precedence con-
straints (⌧v

a

i

� ⌧
v

b

j

) then ⌧v

a

i

has to finish executing before
⌧
v

b

j

starts. Even though these dependencies arise typically
between tasks co-existing on the same CPU, we generalize
dependencies between tasks executing on any end-system.
Task dependencies are partially expressed in [28] as frame
dependencies in the sense that one frame is scheduled before
another frame, which can be used to specify aspects of the
existing task schedule. We introduce constraints for simple
task precedences in our model as follows

⌧v

a

i

� ⌧
v

b

j

) [v
b

, v
b

].mt⇥ f
[v

b

,v

b

]

j,1

.� �

[v
a

, v
a

].mt⇥ (last(F [v

a

,v

a

]

i

).�+ last(F [v

a

,v

a

]

i

).L).

Note that both tasks must have the same period or “rate”.
Multi-rate precedence constraints (extended precedences as
they are called in [10]) are subject for future work.

3.8 Memory constraints
The time-triggered paradigm enables us to define the

memory constraints for the switches and end-system nodes
as an upper bound on the time that a frame can reside inside
the transmitting queue of a node, i.e., the time a frame can
logically remain on a CPU or network link.

8vl
i

2 VL, 8[v
a

, v
x

], [v
x

, v
b

] 2 vl
i

:

[v
x

, v
b

].mt⇥ f
[v

x

,v

b

]

i,1

.�� [v
a

, v
x

].mt⇥ f
[v

a

,v

x

]

i,1

.�  [v
a

, v
x

].b.

Note that an alternative method to directly constrain the
memory utilization in terms of frame and bu↵er lengths im-
plies a non-trivial extension that may require quantifiers in
the logical formulas. The added level of expressiveness, how-
ever, does not justify the inherent increase in complexity and
the required added run-time to solve the problem.

4. SMT-BASED CO-SYNTHESIS
Satisfiability Modulo Theories (SMT) checks the satisfia-

bility of logic formulas in first-order formulation with regard
to certain background theories like linear integer arithmetic
(LA(Z)) or bit-vectors (BV) [2, 27]. A first-order formula
uses variables as well as quantifiers, functional and predicate
symbols, and logical operators [21]. Scheduling problems are

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Memory constraints

Link i

0

Link i+1

0

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Memory constraints

Link i

0

Link i+1

0

maximum allowed time in switch buffers

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Memory constraints

Link i

0

Link i+1

0

maximum allowed time in switch buffers

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Satisfiability Modulo Theories

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Satisfiability Modulo Theories

LA(Z) BV

satisfiability of logical formulas in first-order formulation

background theories

variables

logical symbols

non-logical symbols

quantifiers

x1, x2, . . . , xn

_,^,¬, (,)

9, 8

+,=,%,

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Satisfiability Modulo Theories

LA(Z) BV

satisfiability of logical formulas in first-order formulation

background theories

variables

logical symbols

non-logical symbols

quantifiers

x1, x2, . . . , xn

_,^,¬, (,)

9, 8

+,=,%,

A lot of solvers and a very active community

OpenSMT [Bruttomesso@TACAS10]

CVC4 [Barrett@CAV11]

Yices [Dutertre@CAV14]

Z3 [de Moura@TACAS08]

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Satisfiability Modulo Theories

LA(Z) BV

satisfiability of logical formulas in first-order formulation

background theories

variables

logical symbols

non-logical symbols

quantifiers

x1, x2, . . . , xn

_,^,¬, (,)

9, 8

+,=,%,

A lot of solvers and a very active community

OpenSMT [Bruttomesso@TACAS10]

CVC4 [Barrett@CAV11]

Yices [Dutertre@CAV14]

Z3 [de Moura@TACAS08]

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Satisfiability Modulo Theories

LA(Z) BV

satisfiability of logical formulas in first-order formulation

background theories

variables

logical symbols

non-logical symbols

quantifiers

x1, x2, . . . , xn

_,^,¬, (,)

9, 8

+,=,%,

A lot of solvers and a very active community

OpenSMT [Bruttomesso@TACAS10]

CVC4 [Barrett@CAV11]

Yices [Dutertre@CAV14]

Z3 [de Moura@TACAS08]

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Satisfiability Modulo Theories

LA(Z) BV

satisfiability of logical formulas in first-order formulation

background theories

variables

logical symbols

non-logical symbols

quantifiers

x1, x2, . . . , xn

_,^,¬, (,)

9, 8

+,=,%,

A lot of solvers and a very active community

OpenSMT [Bruttomesso@TACAS10]

CVC4 [Barrett@CAV11]

Yices [Dutertre@CAV14]

Z3 [de Moura@TACAS08]

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

One-shot

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

One-shot

1

10

100

1000

10000

100000

small medium large

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

One-shot

1

10

100

1000

10000

100000

small medium large

32s 997ms

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

One-shot

1

10

100

1000

10000

100000

small medium large

1h 24m 18s 699ms32s 997ms

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

One-shot

1

10

100

1000

10000

100000

small medium large

10h1h 24m 18s 699ms32s 997ms

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

One-shot

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

One-shot
where does the complexity come from?

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

One-shot
where does the complexity come from?

where do the frames come from?

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

One-shot

consumer tasks 
producer tasks 
communication

where does the complexity come from?

where do the frames come from?

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

One-shot

consumer tasks 
producer tasks 
communication

free tasks

where does the complexity come from?

where do the frames come from?

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

One-shot

consumer tasks 
producer tasks 
communication

free tasks

where does the complexity come from?

⌧

where do the frames come from?

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

One-shot

consumer tasks 
producer tasks 
communication

free tasks

where does the complexity come from?

⌧

let’s treat them differently

where do the frames come from?

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

no

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

consumer tasks 
producer tasks 
communication

free tasks

no

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

SMT

consumer tasks 
producer tasks 
communication

free tasks

no

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

SMT

free tasks

no

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

SMT solve

free tasks

no

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

SMT solve

free tasks

no

partial
solution

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

SMT solve

no

partial
solution

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

SMT solve

schedulability
test

no

partial
solution

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

SMT solve

schedulability
test

no

partial
solution

non-schedulable tasks

no

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

SMT solve

schedulability
test

no

partial
solution

no

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

SMT solve

schedulability
test

yes

no

partial
solution

no

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

SMT solve

schedulability
test

yes schedule

no

partial
solution

no

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

0 8

SMT solution

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

0 8

(0, 1, 8, 1)

(2, 1, 8, 1)

(4, 1, 8, 1)

(5, 2, 8, 2)

EDF tasks

SMT solution

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

0 8

(0, 1, 8, 1)

(2, 1, 8, 1)

(4, 1, 8, 1)

(5, 2, 8, 2)

EDF tasks

(0, 2, 8, 8)

(0, 1, 8, 8)

free tasks

�

SMT solution

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

0 8

(0, 1, 8, 1)

(2, 1, 8, 1)

(4, 1, 8, 1)

(5, 2, 8, 2)

EDF tasks

(0, 2, 8, 8)

(0, 1, 8, 8)

free tasks

�

Algorithm 2: Demand-based SMT schedule synthesis

Data: G(V,L),VL,M,�
Result: S (tt-schedule)
begin

S ;;
if Check(V,�) ^ Check(VL,M) then

f false;
�
edf

 �
free

;
�
smt

 � \ �
free

;
while f 6= true do

C Assert(G(V,L),VL,M,�
smt

);
S SMTSolve (C);
if S 6= ; then

�
d

 DemandCheck(V,S,�
edf

);
if �

d

6= ; then
�
edf

 �
edf

\ �
d

;
�
smt

 �
smt

[�
d

;
else

f true;
if �

edf

6= ; then
S S [EDFSim(V,S,�

edf

);

else

f true;

return S;

topology G(V,L), the set of virtual links VL, the set of
messages M, and the set of tasks � (cf. Algorithm 2). Like
in the one-shot method, the utilization on all end-systems
and all network links is verified (Check function) first.

We define the following helper sets. The set of free tasks
�
free

is the set containing all tasks that are neither producer
nor consumer tasks and which are not dependent on other
tasks. We also introduce the set of tasks scheduled with
SMT (�

smt

) and the set of tasks scheduled with EDF (�
edf

).
Initially, �

edf

is equal to the set of free tasks �
free

and
�
smt

= � \ �
free

is the set of remaining tasks from �. We
repeat the following steps until either a solution is found or
the set �

edf

is empty. First, we add the constraints defined
in Section 3 based on the tasks in �

smt

to the solver context
C (Assert) and then invoke the SMT solver (SMTSolve) with
the constructed context. If no solution exists we exit from
the loop and return the empty set. If there exists a partial
solution S 6= ;, we check (via the function DemandCheck)
the demand of the resulting system together with the tasks
which have not yet been scheduled (the tasks in �

edf

).
The demand check is based on the necessary and su�cient

feasibility condition for constrained-deadline asynchronous
tasks with periodic execution under EDF (cf. [3]). The test
constructs a set of intervals between any release and any
deadline over a certain time-window. In each of these in-
tervals the demand of the executing tasks is checked to be
smaller than or equal to the supply (the length of the in-
terval). In our case, for every end-system, the set of tasks
is derived from the already scheduled tasks in �

smt

and the
tasks in �

edf

. The already scheduled tasks in �
smt

have
fixed scheduled intervals according to their virtual frames
whereas the tasks in �

edf

will be treated as EDF tasks.
For every end-system v

a

2 V the function Demand-

Check generates a set e�v

a of virtual periodic tasks,

where every virtual task e⌧
k

v

a is defined by the tuple
h e⌧

k

v

a .�, e⌧
k

v

a .C, e⌧
k

v

a .D, e⌧
k

v

a .T i, consisting, as before, of the
o↵set, the WCET, the relative deadline, and the period of
the virtual task, respectively. For every task ⌧v

a

i

2 �
edf

we
generate a virtual task e⌧

k

v

a with a one to one translation
of the task parameters. Additionally, for every frame o↵set2

f
[v

a

,v

a

]

i,j

.� 2 S we generate a virtual task e⌧
k

v

a with e⌧
k

v

a .� =

f
[v

a

,v

a

]

i,j

.�, e⌧
k

v

a .C = 1, e⌧
k

v

a .D = 1, and e⌧
k

v

a .T = f
[v

a

,v

a

]

i,j

.T .
We use the necessary and su�cient feasibility condition

from [3, 23] for every generated virtual task set e�v

a , namely

8v
a

2 V, 8t
1

2 �v

a , 8t
2

2 �v

a , t
1

< t
2

:
X

e⌧
i

v

a2e
�

v

a

e⌧
i

v

a .C ⇥
✓�

t
2

� e⌧
i

v

a .�� e⌧
i

v

a .D

e⌧
i

v

a .T

⌫
�

⇠
t
1

� e⌧
i

v

a .�

e⌧
i

v

a .T

⇡
+ 1

◆

0

 t
2

� t
1

,

where

�v

a

def

= {av

a

i,j

= e⌧
i

v

a .�+ j ⇥ e⌧
i

v

a .T |e⌧
i

v

a 2 e�v

a , j � 0, av

a

i,j

 �v

a},

�v

a

def

= {dva
i,j

= av

a

i,j

+ e⌧
i

v

a .D|e⌧
i

v

a 2 e�v

a , j � 0, dva
i,j

 �v

a},

�v

a = max({e⌧
i

v

a .�|e⌧
i

v

a 2 e�v

a}) + 2⇥ lcm({e⌧
i

v

a .T |e⌧
i

v

a 2 e�v

a}).

The sets �v

a and �v

a of arrivals and absolute deadlines,
respectively, define intervals in which the demanded execu-
tion time of running tasks has to be less than or equal to
the processor capacity [3, 23]. If the test is fulfilled on every
end-system, we know that applying EDF to the task sets
will result in a feasible schedule. In this case, the function
DemandCheck returns an empty set. We schedule the remain-
der of the tasks by running an EDF simulation (EDFSim) on
each end-system of the entire virtual task set (composed of
both scheduled and unscheduled tasks) until the hyperpe-
riod. The EDF simulation will return the static schedule
for the tasks in �

edf

which will complete the partial solution
S. If the schedulability condition is not fulfilled on some
end-system, the function DemandCheck returns the set (�

d

)
of tasks that have contributed to the intervals where the de-
mand was greater than the supply. These tasks are removed
from the set �

edf

and added to the set �
smt

and the pro-
cedure is repeated. The loop terminates (f true) when
either a full solution is found or the SMT solver could not
synthesize a partial schedule for �

smt

.
Note that in the worst case, the algorithm may perform

worse than the one-shot method due to the intermediary
steps in which partial solutions were unfeasible. If none
of the partial solutions were feasible, in the last step, the
demand-based algorithm has to solve the same input set as
the one-shot method.
The feasibility test3 is known to be co-NP-hard [17, p.

615]. Therefore, the underlying scheduling problem still re-
mains exponential in the worst case. However, the run-time
of the test is highly dependent on the properties of the tasks
(periods, harmonicity of periods, hyperperiod, etc.) which,
in practice, are not that pessimistic. Thus, the demand
method may be more practicable than solving the entire
problem using SMT in the average case. Moreover, splitting
the problem and solving it using an incremental approach

2Frames of the same task scheduled sequentially on the time-
line can be joined into a bigger virtual task to increase the
performance of the feasibility test.
3Note that other tests with pseudo-polynomial complex-
ity [22, 3] could be used instead, but these are only su�cient
or deal with restricted task sets.

SMT solution

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

0 8

(0, 1, 8, 1)

(2, 1, 8, 1)

(4, 1, 8, 1)

(5, 2, 8, 2)

EDF tasks

(0, 2, 8, 8)

(0, 1, 8, 8)

free tasks

�

Algorithm 2: Demand-based SMT schedule synthesis

Data: G(V,L),VL,M,�
Result: S (tt-schedule)
begin

S ;;
if Check(V,�) ^ Check(VL,M) then

f false;
�
edf

 �
free

;
�
smt

 � \ �
free

;
while f 6= true do

C Assert(G(V,L),VL,M,�
smt

);
S SMTSolve (C);
if S 6= ; then

�
d

 DemandCheck(V,S,�
edf

);
if �

d

6= ; then
�
edf

 �
edf

\ �
d

;
�
smt

 �
smt

[�
d

;
else

f true;
if �

edf

6= ; then
S S [EDFSim(V,S,�

edf

);

else

f true;

return S;

topology G(V,L), the set of virtual links VL, the set of
messages M, and the set of tasks � (cf. Algorithm 2). Like
in the one-shot method, the utilization on all end-systems
and all network links is verified (Check function) first.

We define the following helper sets. The set of free tasks
�
free

is the set containing all tasks that are neither producer
nor consumer tasks and which are not dependent on other
tasks. We also introduce the set of tasks scheduled with
SMT (�

smt

) and the set of tasks scheduled with EDF (�
edf

).
Initially, �

edf

is equal to the set of free tasks �
free

and
�
smt

= � \ �
free

is the set of remaining tasks from �. We
repeat the following steps until either a solution is found or
the set �

edf

is empty. First, we add the constraints defined
in Section 3 based on the tasks in �

smt

to the solver context
C (Assert) and then invoke the SMT solver (SMTSolve) with
the constructed context. If no solution exists we exit from
the loop and return the empty set. If there exists a partial
solution S 6= ;, we check (via the function DemandCheck)
the demand of the resulting system together with the tasks
which have not yet been scheduled (the tasks in �

edf

).
The demand check is based on the necessary and su�cient

feasibility condition for constrained-deadline asynchronous
tasks with periodic execution under EDF (cf. [3]). The test
constructs a set of intervals between any release and any
deadline over a certain time-window. In each of these in-
tervals the demand of the executing tasks is checked to be
smaller than or equal to the supply (the length of the in-
terval). In our case, for every end-system, the set of tasks
is derived from the already scheduled tasks in �

smt

and the
tasks in �

edf

. The already scheduled tasks in �
smt

have
fixed scheduled intervals according to their virtual frames
whereas the tasks in �

edf

will be treated as EDF tasks.
For every end-system v

a

2 V the function Demand-

Check generates a set e�v

a of virtual periodic tasks,

where every virtual task e⌧
k

v

a is defined by the tuple
h e⌧

k

v

a .�, e⌧
k

v

a .C, e⌧
k

v

a .D, e⌧
k

v

a .T i, consisting, as before, of the
o↵set, the WCET, the relative deadline, and the period of
the virtual task, respectively. For every task ⌧v

a

i

2 �
edf

we
generate a virtual task e⌧

k

v

a with a one to one translation
of the task parameters. Additionally, for every frame o↵set2

f
[v

a

,v

a

]

i,j

.� 2 S we generate a virtual task e⌧
k

v

a with e⌧
k

v

a .� =

f
[v

a

,v

a

]

i,j

.�, e⌧
k

v

a .C = 1, e⌧
k

v

a .D = 1, and e⌧
k

v

a .T = f
[v

a

,v

a

]

i,j

.T .
We use the necessary and su�cient feasibility condition

from [3, 23] for every generated virtual task set e�v

a , namely

8v
a

2 V, 8t
1

2 �v

a , 8t
2

2 �v

a , t
1

< t
2

:
X

e⌧
i

v

a2e
�

v

a

e⌧
i

v

a .C ⇥
✓�

t
2

� e⌧
i

v

a .�� e⌧
i

v

a .D

e⌧
i

v

a .T

⌫
�

⇠
t
1

� e⌧
i

v

a .�

e⌧
i

v

a .T

⇡
+ 1

◆

0

 t
2

� t
1

,

where

�v

a

def

= {av

a

i,j

= e⌧
i

v

a .�+ j ⇥ e⌧
i

v

a .T |e⌧
i

v

a 2 e�v

a , j � 0, av

a

i,j

 �v

a},

�v

a

def

= {dva
i,j

= av

a

i,j

+ e⌧
i

v

a .D|e⌧
i

v

a 2 e�v

a , j � 0, dva
i,j

 �v

a},

�v

a = max({e⌧
i

v

a .�|e⌧
i

v

a 2 e�v

a}) + 2⇥ lcm({e⌧
i

v

a .T |e⌧
i

v

a 2 e�v

a}).

The sets �v

a and �v

a of arrivals and absolute deadlines,
respectively, define intervals in which the demanded execu-
tion time of running tasks has to be less than or equal to
the processor capacity [3, 23]. If the test is fulfilled on every
end-system, we know that applying EDF to the task sets
will result in a feasible schedule. In this case, the function
DemandCheck returns an empty set. We schedule the remain-
der of the tasks by running an EDF simulation (EDFSim) on
each end-system of the entire virtual task set (composed of
both scheduled and unscheduled tasks) until the hyperpe-
riod. The EDF simulation will return the static schedule
for the tasks in �

edf

which will complete the partial solution
S. If the schedulability condition is not fulfilled on some
end-system, the function DemandCheck returns the set (�

d

)
of tasks that have contributed to the intervals where the de-
mand was greater than the supply. These tasks are removed
from the set �

edf

and added to the set �
smt

and the pro-
cedure is repeated. The loop terminates (f true) when
either a full solution is found or the SMT solver could not
synthesize a partial schedule for �

smt

.
Note that in the worst case, the algorithm may perform

worse than the one-shot method due to the intermediary
steps in which partial solutions were unfeasible. If none
of the partial solutions were feasible, in the last step, the
demand-based algorithm has to solve the same input set as
the one-shot method.
The feasibility test3 is known to be co-NP-hard [17, p.

615]. Therefore, the underlying scheduling problem still re-
mains exponential in the worst case. However, the run-time
of the test is highly dependent on the properties of the tasks
(periods, harmonicity of periods, hyperperiod, etc.) which,
in practice, are not that pessimistic. Thus, the demand
method may be more practicable than solving the entire
problem using SMT in the average case. Moreover, splitting
the problem and solving it using an incremental approach

2Frames of the same task scheduled sequentially on the time-
line can be joined into a bigger virtual task to increase the
performance of the feasibility test.
3Note that other tests with pseudo-polynomial complex-
ity [22, 3] could be used instead, but these are only su�cient
or deal with restricted task sets.

SMT solution

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

0 8

(0, 1, 8, 1)

(2, 1, 8, 1)

(4, 1, 8, 1)

(5, 2, 8, 2)

EDF tasks

0 8

(0, 2, 8, 8)

(0, 1, 8, 8)

free tasks

�

Algorithm 2: Demand-based SMT schedule synthesis

Data: G(V,L),VL,M,�
Result: S (tt-schedule)
begin

S ;;
if Check(V,�) ^ Check(VL,M) then

f false;
�
edf

 �
free

;
�
smt

 � \ �
free

;
while f 6= true do

C Assert(G(V,L),VL,M,�
smt

);
S SMTSolve (C);
if S 6= ; then

�
d

 DemandCheck(V,S,�
edf

);
if �

d

6= ; then
�
edf

 �
edf

\ �
d

;
�
smt

 �
smt

[�
d

;
else

f true;
if �

edf

6= ; then
S S [EDFSim(V,S,�

edf

);

else

f true;

return S;

topology G(V,L), the set of virtual links VL, the set of
messages M, and the set of tasks � (cf. Algorithm 2). Like
in the one-shot method, the utilization on all end-systems
and all network links is verified (Check function) first.

We define the following helper sets. The set of free tasks
�
free

is the set containing all tasks that are neither producer
nor consumer tasks and which are not dependent on other
tasks. We also introduce the set of tasks scheduled with
SMT (�

smt

) and the set of tasks scheduled with EDF (�
edf

).
Initially, �

edf

is equal to the set of free tasks �
free

and
�
smt

= � \ �
free

is the set of remaining tasks from �. We
repeat the following steps until either a solution is found or
the set �

edf

is empty. First, we add the constraints defined
in Section 3 based on the tasks in �

smt

to the solver context
C (Assert) and then invoke the SMT solver (SMTSolve) with
the constructed context. If no solution exists we exit from
the loop and return the empty set. If there exists a partial
solution S 6= ;, we check (via the function DemandCheck)
the demand of the resulting system together with the tasks
which have not yet been scheduled (the tasks in �

edf

).
The demand check is based on the necessary and su�cient

feasibility condition for constrained-deadline asynchronous
tasks with periodic execution under EDF (cf. [3]). The test
constructs a set of intervals between any release and any
deadline over a certain time-window. In each of these in-
tervals the demand of the executing tasks is checked to be
smaller than or equal to the supply (the length of the in-
terval). In our case, for every end-system, the set of tasks
is derived from the already scheduled tasks in �

smt

and the
tasks in �

edf

. The already scheduled tasks in �
smt

have
fixed scheduled intervals according to their virtual frames
whereas the tasks in �

edf

will be treated as EDF tasks.
For every end-system v

a

2 V the function Demand-

Check generates a set e�v

a of virtual periodic tasks,

where every virtual task e⌧
k

v

a is defined by the tuple
h e⌧

k

v

a .�, e⌧
k

v

a .C, e⌧
k

v

a .D, e⌧
k

v

a .T i, consisting, as before, of the
o↵set, the WCET, the relative deadline, and the period of
the virtual task, respectively. For every task ⌧v

a

i

2 �
edf

we
generate a virtual task e⌧

k

v

a with a one to one translation
of the task parameters. Additionally, for every frame o↵set2

f
[v

a

,v

a

]

i,j

.� 2 S we generate a virtual task e⌧
k

v

a with e⌧
k

v

a .� =

f
[v

a

,v

a

]

i,j

.�, e⌧
k

v

a .C = 1, e⌧
k

v

a .D = 1, and e⌧
k

v

a .T = f
[v

a

,v

a

]

i,j

.T .
We use the necessary and su�cient feasibility condition

from [3, 23] for every generated virtual task set e�v

a , namely

8v
a

2 V, 8t
1

2 �v

a , 8t
2

2 �v

a , t
1

< t
2

:
X

e⌧
i

v

a2e
�

v

a

e⌧
i

v

a .C ⇥
✓�

t
2

� e⌧
i

v

a .�� e⌧
i

v

a .D

e⌧
i

v

a .T

⌫
�

⇠
t
1

� e⌧
i

v

a .�

e⌧
i

v

a .T

⇡
+ 1

◆

0

 t
2

� t
1

,

where

�v

a

def

= {av

a

i,j

= e⌧
i

v

a .�+ j ⇥ e⌧
i

v

a .T |e⌧
i

v

a 2 e�v

a , j � 0, av

a

i,j

 �v

a},

�v

a

def

= {dva
i,j

= av

a

i,j

+ e⌧
i

v

a .D|e⌧
i

v

a 2 e�v

a , j � 0, dva
i,j

 �v

a},

�v

a = max({e⌧
i

v

a .�|e⌧
i

v

a 2 e�v

a}) + 2⇥ lcm({e⌧
i

v

a .T |e⌧
i

v

a 2 e�v

a}).

The sets �v

a and �v

a of arrivals and absolute deadlines,
respectively, define intervals in which the demanded execu-
tion time of running tasks has to be less than or equal to
the processor capacity [3, 23]. If the test is fulfilled on every
end-system, we know that applying EDF to the task sets
will result in a feasible schedule. In this case, the function
DemandCheck returns an empty set. We schedule the remain-
der of the tasks by running an EDF simulation (EDFSim) on
each end-system of the entire virtual task set (composed of
both scheduled and unscheduled tasks) until the hyperpe-
riod. The EDF simulation will return the static schedule
for the tasks in �

edf

which will complete the partial solution
S. If the schedulability condition is not fulfilled on some
end-system, the function DemandCheck returns the set (�

d

)
of tasks that have contributed to the intervals where the de-
mand was greater than the supply. These tasks are removed
from the set �

edf

and added to the set �
smt

and the pro-
cedure is repeated. The loop terminates (f true) when
either a full solution is found or the SMT solver could not
synthesize a partial schedule for �

smt

.
Note that in the worst case, the algorithm may perform

worse than the one-shot method due to the intermediary
steps in which partial solutions were unfeasible. If none
of the partial solutions were feasible, in the last step, the
demand-based algorithm has to solve the same input set as
the one-shot method.
The feasibility test3 is known to be co-NP-hard [17, p.

615]. Therefore, the underlying scheduling problem still re-
mains exponential in the worst case. However, the run-time
of the test is highly dependent on the properties of the tasks
(periods, harmonicity of periods, hyperperiod, etc.) which,
in practice, are not that pessimistic. Thus, the demand
method may be more practicable than solving the entire
problem using SMT in the average case. Moreover, splitting
the problem and solving it using an incremental approach

2Frames of the same task scheduled sequentially on the time-
line can be joined into a bigger virtual task to increase the
performance of the feasibility test.
3Note that other tests with pseudo-polynomial complex-
ity [22, 3] could be used instead, but these are only su�cient
or deal with restricted task sets.

SMT solution

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

• transform scheduled frames on CPUs into asynchronous periodic tasks

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

• transform scheduled frames on CPUs into asynchronous periodic tasks

• add free tasks and apply schedulability test [Pellizzoni@RealTimeSyst05]

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

• transform scheduled frames on CPUs into asynchronous periodic tasks

• add free tasks and apply schedulability test [Pellizzoni@RealTimeSyst05]

• if not schedulable, increment number of tasks that are solved with SMT

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

• transform scheduled frames on CPUs into asynchronous periodic tasks

• add free tasks and apply schedulability test [Pellizzoni@RealTimeSyst05]

• if not schedulable, increment number of tasks that are solved with SMT

• if schedulable, generate final schedule by simulating EDF until HP

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

• transform scheduled frames on CPUs into asynchronous periodic tasks

• add free tasks and apply schedulability test [Pellizzoni@RealTimeSyst05]

• if not schedulable, increment number of tasks that are solved with SMT

• if schedulable, generate final schedule by simulating EDF until HP

• incremental algorithm so we don’t lose schedulability

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Demand-based

• transform scheduled frames on CPUs into asynchronous periodic tasks

• add free tasks and apply schedulability test [Pellizzoni@RealTimeSyst05]

• if not schedulable, increment number of tasks that are solved with SMT

• if schedulable, generate final schedule by simulating EDF until HP

• incremental algorithm so we don’t lose schedulability

• we are still exponential but scale better for the average case

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Evaluation

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Evaluation
time

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Evaluation
time

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Evaluation
time

?

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Evaluation
time

topology

macrotick

link/CPU utilization

size of network

?
periods

hyperperiod

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Topologies
(a) (b) (c)

Periods {10,20,25,50,100}, {10,30,100}, {50,75} ms
1usec network link granularity
100Mbit/s and 1Gbit/s
random message size and virtual links
different macrotick and utilization configurations

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Mesh

Periods {10,20,25,50,100} ms

(a) (b) (c)

Figure 2: Example network topologies: (a) Ring–

size 6, (b) Mesh–size 6, (c) Tree–depth 2. All ex-

amples with 3 end systems per switch (leaf nodes

only).

Num Num
Size Topology

Switches End-Systems

Small (S)

Mesh, Ring 2 4
Tree, depth = 1 4 6

Medium (M)

Mesh, Ring 4 16
Tree, depth = 2 13 36

Large (L)

Mesh, Ring 8 48
Tree, depth = 3 15 48

Table 1: Configuration parameters for network con-

figurations of each size.

also reduces the runtime for the average case in which only
a few incremental steps are needed.

Naturally, we do not improve the scalability of the un-
derlying SMT solver, rather, we reduce, regardless of the
algorithm complexity and without sacrificing schedulability,
the size of the SMT problem and hence the number of asser-
tions and frames that place a burden on the solver. Through
this we can tackle medium to large problems even in the ex-
tended scenario of co-scheduling preemptive tasks together
with messages in a multi-hop switched network. Moreover,
finding a schedule with the SMT solver becomes harder the
more utilized the links become. By eliminating subsets of
tasks from the input of the SMT solver we make it easier for
the SMT solver to place the (virtual) frames of the remain-
ing tasks, thus shifting the complexity from the SMT solver
to the schedulability test.

We show in the next section that the demand method out-
performs the one-shot in most cases and results in significant
performance improvements leading to better scalability for
medium to large input configurations.

5. EVALUATION
We have implemented a prototype tool, called TT-NTSS,

for task- and network-level static schedule generation based
on the system model, constraint formulation, and schedul-
ing algorithms described above. The underlying SMT solver
employed by the tool is Yices v2.2.1 (64bit) [6] using lin-
ear integer arithmetic (LA(Z)) without quantifiers as the
background theory. We have run all experiments on a 64bit
8-core 3.40GHz Intel Core-i7 PC with 16GB memory. We
have fixed a 1µsec granularity for the network links, and de-
fined two di↵erent network speeds (100Mbit/s and 1Gbit/s).

We analyze the performance of TT-NTSS over a number
of industrial-sized synthetic scenarios following the network
topologies depicted in Figure 2. For each case we evalu-
ate three network sizes which range from small (i.e. a cou-
ple of switches) to large (i.e. tens of switches). We scale
proportionally the number of connected end systems and
therefore the number of tasks to be scheduled. We define
a virtual link between each two communicating tasks exe-

10 ms

1 sec

1 min

100 min

50 100 250 500

tim
e

macrotick [µsec]

P={10, 20, 25, 50, 100}[ms], HP=100ms, Size=S, U=50%, T=MESH

tim
e-

ou
t

demand
one-shot

Figure 5: Runtime as a function of the macrotick.

cuting on distinct randomly-selected end systems. Table 1
summarizes the set of configurations. Message sizes are cho-
sen randomly between the maximum and minimum Eth-
ernet packet sizes, while periods are randomly distributed
among three di↵erent predefined sets. The WCET of tasks
is set proportionally to the task period and the desired CPU
utilization bound, rounded to the nearest macrotick multi-
ple. Each end-system runs a total of 16 tasks, of which 8
are communicating and 8 free. VLs are defined between
communicating tasks running on randomly selected end-
systems. It is a common pattern in industrial applications
that communicating tasks (e.g. sensing and actuating) are
sensibly smaller than non-communicating ones (e.g. back-
ground computation and core functionality). Therefore, we
choose to model free tasks to account for approximately 75%
of the utilization and communicating tasks for 25%. For
the experiments we use 3 di↵erent period configurations,
namely {10, 20, 25, 50, 100}, {10, 30, 100}, and {50, 75} ms.
The time-out for each experiment was set to 100 minutes af-
ter which the problems were deemed unfeasible. Note that
the number of leaves in the tree topology is set to 3 for the
small and medium sized networks and 2 for the large, while
the tree depth is set to 1, 2, and 3 for small, medium, and
large, respectively.

Figure 3 and 4 depict the runtime of the demand-based
algorithm compared to the one-shot with di↵erent network
topologies and period configurations. For these experiments
we fixed the macrotick on each end-system to 250µs and the
average utilization of tasks to 50%. The y-axis showing the
runtime has a logarithmic scale and the x-axis shows the 3
di↵erent sizes for each topology, each size being described
by the tuple (switches, total end-systems, total tasks, vir-
tual links). We combine the mesh and ring topologies to-
gether in Figure 3 since they have similar sizes in terms of
end-systems, switches, tasks, and virtual links. The one-
shot method reaches the time-out (100 minutes) even for
most medium-sized problems whereas the demand method
performs significantly better in all cases scaling up to large
network sizes.

The hardware-dependent macrotick for time-driven
scheduling in real-time operating systems (RTOS) running
on embedded platforms is usually in the range of hundreds
of microseconds to a few milliseconds [4, p. 266]. The RTOS
developed internally at TTTech (see [7] for a short descrip-
tion) running on a TMS570 MCU [33] with a 180 MHz ARM
Cortex-R4F processor has a configurable macrotick in the
range of 50µs to 1ms. Smaller macroticks increase the re-

10 ms

1 sec

1 min

100 min

S (2, 4, 64, 16) M (4, 16, 256, 64) L (8, 48, 768, 192)

tim
e

tim
e-

ou
t

MESH demand
MESH one-shot

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Ring
(a) (b) (c)

Figure 2: Example network topologies: (a) Ring–

size 6, (b) Mesh–size 6, (c) Tree–depth 2. All ex-

amples with 3 end systems per switch (leaf nodes

only).

Num Num
Size Topology

Switches End-Systems

Small (S)

Mesh, Ring 2 4
Tree, depth = 1 4 6

Medium (M)

Mesh, Ring 4 16
Tree, depth = 2 13 36

Large (L)

Mesh, Ring 8 48
Tree, depth = 3 15 48

Table 1: Configuration parameters for network con-

figurations of each size.

also reduces the runtime for the average case in which only
a few incremental steps are needed.

Naturally, we do not improve the scalability of the un-
derlying SMT solver, rather, we reduce, regardless of the
algorithm complexity and without sacrificing schedulability,
the size of the SMT problem and hence the number of asser-
tions and frames that place a burden on the solver. Through
this we can tackle medium to large problems even in the ex-
tended scenario of co-scheduling preemptive tasks together
with messages in a multi-hop switched network. Moreover,
finding a schedule with the SMT solver becomes harder the
more utilized the links become. By eliminating subsets of
tasks from the input of the SMT solver we make it easier for
the SMT solver to place the (virtual) frames of the remain-
ing tasks, thus shifting the complexity from the SMT solver
to the schedulability test.

We show in the next section that the demand method out-
performs the one-shot in most cases and results in significant
performance improvements leading to better scalability for
medium to large input configurations.

5. EVALUATION
We have implemented a prototype tool, called TT-NTSS,

for task- and network-level static schedule generation based
on the system model, constraint formulation, and schedul-
ing algorithms described above. The underlying SMT solver
employed by the tool is Yices v2.2.1 (64bit) [6] using lin-
ear integer arithmetic (LA(Z)) without quantifiers as the
background theory. We have run all experiments on a 64bit
8-core 3.40GHz Intel Core-i7 PC with 16GB memory. We
have fixed a 1µsec granularity for the network links, and de-
fined two di↵erent network speeds (100Mbit/s and 1Gbit/s).

We analyze the performance of TT-NTSS over a number
of industrial-sized synthetic scenarios following the network
topologies depicted in Figure 2. For each case we evalu-
ate three network sizes which range from small (i.e. a cou-
ple of switches) to large (i.e. tens of switches). We scale
proportionally the number of connected end systems and
therefore the number of tasks to be scheduled. We define
a virtual link between each two communicating tasks exe-

10 ms

1 sec

1 min

100 min

50 100 250 500

tim
e

macrotick [µsec]

P={10, 20, 25, 50, 100}[ms], HP=100ms, Size=S, U=50%, T=MESH

tim
e-

ou
t

demand
one-shot

Figure 5: Runtime as a function of the macrotick.

cuting on distinct randomly-selected end systems. Table 1
summarizes the set of configurations. Message sizes are cho-
sen randomly between the maximum and minimum Eth-
ernet packet sizes, while periods are randomly distributed
among three di↵erent predefined sets. The WCET of tasks
is set proportionally to the task period and the desired CPU
utilization bound, rounded to the nearest macrotick multi-
ple. Each end-system runs a total of 16 tasks, of which 8
are communicating and 8 free. VLs are defined between
communicating tasks running on randomly selected end-
systems. It is a common pattern in industrial applications
that communicating tasks (e.g. sensing and actuating) are
sensibly smaller than non-communicating ones (e.g. back-
ground computation and core functionality). Therefore, we
choose to model free tasks to account for approximately 75%
of the utilization and communicating tasks for 25%. For
the experiments we use 3 di↵erent period configurations,
namely {10, 20, 25, 50, 100}, {10, 30, 100}, and {50, 75} ms.
The time-out for each experiment was set to 100 minutes af-
ter which the problems were deemed unfeasible. Note that
the number of leaves in the tree topology is set to 3 for the
small and medium sized networks and 2 for the large, while
the tree depth is set to 1, 2, and 3 for small, medium, and
large, respectively.

Figure 3 and 4 depict the runtime of the demand-based
algorithm compared to the one-shot with di↵erent network
topologies and period configurations. For these experiments
we fixed the macrotick on each end-system to 250µs and the
average utilization of tasks to 50%. The y-axis showing the
runtime has a logarithmic scale and the x-axis shows the 3
di↵erent sizes for each topology, each size being described
by the tuple (switches, total end-systems, total tasks, vir-
tual links). We combine the mesh and ring topologies to-
gether in Figure 3 since they have similar sizes in terms of
end-systems, switches, tasks, and virtual links. The one-
shot method reaches the time-out (100 minutes) even for
most medium-sized problems whereas the demand method
performs significantly better in all cases scaling up to large
network sizes.

The hardware-dependent macrotick for time-driven
scheduling in real-time operating systems (RTOS) running
on embedded platforms is usually in the range of hundreds
of microseconds to a few milliseconds [4, p. 266]. The RTOS
developed internally at TTTech (see [7] for a short descrip-
tion) running on a TMS570 MCU [33] with a 180 MHz ARM
Cortex-R4F processor has a configurable macrotick in the
range of 50µs to 1ms. Smaller macroticks increase the re-Periods {10,30,100} ms

10 ms

1 sec

1 min

100 min

S (2, 4, 64, 16) M (4, 16, 256, 64) L (8, 48, 768, 192)

tim
e

tim
e-

ou
t

RING demand
RING one-shot

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Tree
(a) (b) (c)

Figure 2: Example network topologies: (a) Ring–

size 6, (b) Mesh–size 6, (c) Tree–depth 2. All ex-

amples with 3 end systems per switch (leaf nodes

only).

Num Num
Size Topology

Switches End-Systems

Small (S)

Mesh, Ring 2 4
Tree, depth = 1 4 6

Medium (M)

Mesh, Ring 4 16
Tree, depth = 2 13 36

Large (L)

Mesh, Ring 8 48
Tree, depth = 3 15 48

Table 1: Configuration parameters for network con-

figurations of each size.

also reduces the runtime for the average case in which only
a few incremental steps are needed.

Naturally, we do not improve the scalability of the un-
derlying SMT solver, rather, we reduce, regardless of the
algorithm complexity and without sacrificing schedulability,
the size of the SMT problem and hence the number of asser-
tions and frames that place a burden on the solver. Through
this we can tackle medium to large problems even in the ex-
tended scenario of co-scheduling preemptive tasks together
with messages in a multi-hop switched network. Moreover,
finding a schedule with the SMT solver becomes harder the
more utilized the links become. By eliminating subsets of
tasks from the input of the SMT solver we make it easier for
the SMT solver to place the (virtual) frames of the remain-
ing tasks, thus shifting the complexity from the SMT solver
to the schedulability test.

We show in the next section that the demand method out-
performs the one-shot in most cases and results in significant
performance improvements leading to better scalability for
medium to large input configurations.

5. EVALUATION
We have implemented a prototype tool, called TT-NTSS,

for task- and network-level static schedule generation based
on the system model, constraint formulation, and schedul-
ing algorithms described above. The underlying SMT solver
employed by the tool is Yices v2.2.1 (64bit) [6] using lin-
ear integer arithmetic (LA(Z)) without quantifiers as the
background theory. We have run all experiments on a 64bit
8-core 3.40GHz Intel Core-i7 PC with 16GB memory. We
have fixed a 1µsec granularity for the network links, and de-
fined two di↵erent network speeds (100Mbit/s and 1Gbit/s).

We analyze the performance of TT-NTSS over a number
of industrial-sized synthetic scenarios following the network
topologies depicted in Figure 2. For each case we evalu-
ate three network sizes which range from small (i.e. a cou-
ple of switches) to large (i.e. tens of switches). We scale
proportionally the number of connected end systems and
therefore the number of tasks to be scheduled. We define
a virtual link between each two communicating tasks exe-

10 ms

1 sec

1 min

100 min

50 100 250 500

tim
e

macrotick [µsec]

P={10, 20, 25, 50, 100}[ms], HP=100ms, Size=S, U=50%, T=MESH

tim
e-

ou
t

demand
one-shot

Figure 5: Runtime as a function of the macrotick.

cuting on distinct randomly-selected end systems. Table 1
summarizes the set of configurations. Message sizes are cho-
sen randomly between the maximum and minimum Eth-
ernet packet sizes, while periods are randomly distributed
among three di↵erent predefined sets. The WCET of tasks
is set proportionally to the task period and the desired CPU
utilization bound, rounded to the nearest macrotick multi-
ple. Each end-system runs a total of 16 tasks, of which 8
are communicating and 8 free. VLs are defined between
communicating tasks running on randomly selected end-
systems. It is a common pattern in industrial applications
that communicating tasks (e.g. sensing and actuating) are
sensibly smaller than non-communicating ones (e.g. back-
ground computation and core functionality). Therefore, we
choose to model free tasks to account for approximately 75%
of the utilization and communicating tasks for 25%. For
the experiments we use 3 di↵erent period configurations,
namely {10, 20, 25, 50, 100}, {10, 30, 100}, and {50, 75} ms.
The time-out for each experiment was set to 100 minutes af-
ter which the problems were deemed unfeasible. Note that
the number of leaves in the tree topology is set to 3 for the
small and medium sized networks and 2 for the large, while
the tree depth is set to 1, 2, and 3 for small, medium, and
large, respectively.

Figure 3 and 4 depict the runtime of the demand-based
algorithm compared to the one-shot with di↵erent network
topologies and period configurations. For these experiments
we fixed the macrotick on each end-system to 250µs and the
average utilization of tasks to 50%. The y-axis showing the
runtime has a logarithmic scale and the x-axis shows the 3
di↵erent sizes for each topology, each size being described
by the tuple (switches, total end-systems, total tasks, vir-
tual links). We combine the mesh and ring topologies to-
gether in Figure 3 since they have similar sizes in terms of
end-systems, switches, tasks, and virtual links. The one-
shot method reaches the time-out (100 minutes) even for
most medium-sized problems whereas the demand method
performs significantly better in all cases scaling up to large
network sizes.

The hardware-dependent macrotick for time-driven
scheduling in real-time operating systems (RTOS) running
on embedded platforms is usually in the range of hundreds
of microseconds to a few milliseconds [4, p. 266]. The RTOS
developed internally at TTTech (see [7] for a short descrip-
tion) running on a TMS570 MCU [33] with a 180 MHz ARM
Cortex-R4F processor has a configurable macrotick in the
range of 50µs to 1ms. Smaller macroticks increase the re-Periods {50,75} ms

10 ms

1 sec

1 min

100 min

S (4, 6, 96, 24) M (13, 36, 576, 144) L (15, 48, 768, 192)

tim
e

tim
e-

ou
t

TREE demand
TREE one-shot

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Macrotick
(a) (b) (c)

Figure 2: Example network topologies: (a) Ring–

size 6, (b) Mesh–size 6, (c) Tree–depth 2. All ex-

amples with 3 end systems per switch (leaf nodes

only).

Num Num
Size Topology

Switches End-Systems

Small (S)

Mesh, Ring 2 4
Tree, depth = 1 4 6

Medium (M)

Mesh, Ring 4 16
Tree, depth = 2 13 36

Large (L)

Mesh, Ring 8 48
Tree, depth = 3 15 48

Table 1: Configuration parameters for network con-

figurations of each size.

also reduces the runtime for the average case in which only
a few incremental steps are needed.

Naturally, we do not improve the scalability of the un-
derlying SMT solver, rather, we reduce, regardless of the
algorithm complexity and without sacrificing schedulability,
the size of the SMT problem and hence the number of asser-
tions and frames that place a burden on the solver. Through
this we can tackle medium to large problems even in the ex-
tended scenario of co-scheduling preemptive tasks together
with messages in a multi-hop switched network. Moreover,
finding a schedule with the SMT solver becomes harder the
more utilized the links become. By eliminating subsets of
tasks from the input of the SMT solver we make it easier for
the SMT solver to place the (virtual) frames of the remain-
ing tasks, thus shifting the complexity from the SMT solver
to the schedulability test.

We show in the next section that the demand method out-
performs the one-shot in most cases and results in significant
performance improvements leading to better scalability for
medium to large input configurations.

5. EVALUATION
We have implemented a prototype tool, called TT-NTSS,

for task- and network-level static schedule generation based
on the system model, constraint formulation, and schedul-
ing algorithms described above. The underlying SMT solver
employed by the tool is Yices v2.2.1 (64bit) [6] using lin-
ear integer arithmetic (LA(Z)) without quantifiers as the
background theory. We have run all experiments on a 64bit
8-core 3.40GHz Intel Core-i7 PC with 16GB memory. We
have fixed a 1µsec granularity for the network links, and de-
fined two di↵erent network speeds (100Mbit/s and 1Gbit/s).

We analyze the performance of TT-NTSS over a number
of industrial-sized synthetic scenarios following the network
topologies depicted in Figure 2. For each case we evalu-
ate three network sizes which range from small (i.e. a cou-
ple of switches) to large (i.e. tens of switches). We scale
proportionally the number of connected end systems and
therefore the number of tasks to be scheduled. We define
a virtual link between each two communicating tasks exe-

10 ms

1 sec

1 min

100 min

50 100 250 500

tim
e

macrotick [µsec]

P={10, 20, 25, 50, 100}[ms], HP=100ms, Size=S, U=50%, T=MESH

tim
e-

ou
t

one-shot
demand

Figure 5: Runtime as a function of the macrotick.

cuting on distinct randomly-selected end systems. Table 1
summarizes the set of configurations. Message sizes are cho-
sen randomly between the maximum and minimum Eth-
ernet packet sizes, while periods are randomly distributed
among three di↵erent predefined sets. The WCET of tasks
is set proportionally to the task period and the desired CPU
utilization bound, rounded to the nearest macrotick multi-
ple. Each end-system runs a total of 16 tasks, of which 8
are communicating and 8 free. VLs are defined between
communicating tasks running on randomly selected end-
systems. It is a common pattern in industrial applications
that communicating tasks (e.g. sensing and actuating) are
sensibly smaller than non-communicating ones (e.g. back-
ground computation and core functionality). Therefore, we
choose to model free tasks to account for approximately 75%
of the utilization and communicating tasks for 25%. For
the experiments we use 3 di↵erent period configurations,
namely {10, 20, 25, 50, 100}, {10, 30, 100}, and {50, 75} ms.
The time-out for each experiment was set to 100 minutes af-
ter which the problems were deemed unfeasible. Note that
the number of leaves in the tree topology is set to 3 for the
small and medium sized networks and 2 for the large, while
the tree depth is set to 1, 2, and 3 for small, medium, and
large, respectively.
Figure 3 and 4 depict the runtime of the demand-based

algorithm compared to the one-shot with di↵erent network
topologies and period configurations. For these experiments
we fixed the macrotick on each end-system to 250µs and the
average utilization of tasks to 50%. The y-axis showing the
runtime has a logarithmic scale and the x-axis shows the 3
di↵erent sizes for each topology, each size being described
by the tuple (switches, total end-systems, total tasks, vir-
tual links). We combine the mesh and ring topologies to-
gether in Figure 3 since they have similar sizes in terms of
end-systems, switches, tasks, and virtual links. The one-
shot method reaches the time-out (100 minutes) even for
most medium-sized problems whereas the demand method
performs significantly better in all cases scaling up to large
network sizes.
The hardware-dependent macrotick for time-driven

scheduling in real-time operating systems (RTOS) running
on embedded platforms is usually in the range of hundreds
of microseconds to a few milliseconds [4, p. 266]. The RTOS
developed internally at TTTech (see [7] for a short descrip-
tion) running on a TMS570 MCU [33] with a 180 MHz ARM
Cortex-R4F processor has a configurable macrotick in the
range of 50µs to 1ms. Smaller macroticks increase the re-

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

10 ms

1 sec

1 min

100 min

S (2, 4, 64, 16) M (4, 16, 256, 64) L (8, 48, 768, 192)

tim
e

tim
e-

ou
t

MESH demand
MESH one-shot

RING demand
RING one-shot

(a) P
1

= {10, 20, 25, 50, 100}ms

10 ms

1 sec

1 min

100 min

S (2, 4, 64, 16) M (4, 16, 256, 64) L (8, 48, 768, 192)

tim
e

tim
e-

ou
t

MESH demand
MESH one-shot

RING demand
RING one-shot

(b) P
2

= {10, 30, 100}ms

10 ms

1 sec

1 min

100 min

S (2, 4, 64, 16) M (4, 16, 256, 64) L (8, 48, 768, 192)

tim
e

tim
e-

ou
t

MESH demand
MESH one-shot

RING demand
RING one-shot

(c) P
3

= {50, 75}ms

Figure 3: Runtime for mesh and ring topologies with MT = 250µsec, U = 50%.

10 ms

1 sec

1 min

100 min

S (4, 6, 96, 24) M (13, 36, 576, 144) L (15, 48, 768, 192)

tim
e

tim
e-

ou
t

TREE demand
TREE one-shot

(a) P
1

= {10, 20, 25, 50, 100}ms

10 ms

1 sec

1 min

100 min

S (4, 6, 96, 24) M (13, 36, 576, 144) L (15, 48, 768, 192)

tim
e

tim
e-

ou
t

TREE demand
TREE one-shot

(b) P
2

= {10, 30, 100}ms

10 ms

1 sec

1 min

100 min

S (4, 6, 96, 24) M (13, 36, 576, 144) L (15, 48, 768, 192)

tim
e

tim
e-

ou
t

TREE demand
TREE one-shot

(c) P
3

= {50, 75}ms

Figure 4: Runtime for the tree topology with MT = 250µsec, U = 50%.

10 ms

1 sec

1 min

100 min

25 50 75

tim
e

average end-system utilization [%]

P={10, 20, 25, 50, 100}[ms], HP=100ms, MT=250µsec, Size=S, T=MESH

tim
e-

ou
t

one-shot
demand

Figure 6: Runtime as a function of the average end-

system utilization.

sponsiveness of the system but introduce more overhead due
to more frequent timer interrupt invocations and context
switches. The macrotick also has an impact on the runtime
of our method, a bigger macrotick leads to tasks generating
less virtual frames but decreases the solution space (simi-
lar to the raster method for network links). In Figure 5
we compare the runtime of the one-shot and demand algo-
rithm (logarithmic y-axis) as a function of the macrotick
length (x-axis). All values were obtained using the small
mesh topology with 50% task utilization, period configura-
tion {10, 20, 25, 50, 100}, and macrotick values between 50µs
and 0.5ms. As can be seen, the smaller the macrotick is,
the longer it takes to find a schedule due to the increas-
ing number of virtual frames generated by the tasks on the
end-system CPUs.

In Figure 6 we compare the runtime of the demand and
one-shot methods (logarithmic y-axis) as a function of the
average end-system utilization (x-axis) for a small mesh
topology where each end-system has a macrotick of 250µs
and the task and message periods are chosen randomly from

 0

 50000

 100000

 150000

 200000

 250000

100 ms 1 sec 1 min 30 min
 0

 500

 1000

 1500

 2000

 2500

 3000

as
se

rti
on

s

fr
am

es

runtime

MT=250µsec, ALG=DEMAND

assertions (left y-axis)
frames (right y-axis)

Figure 7: Assertions and frames as a function of the

runtime.

the period configuration set {10, 20, 25, 50, 100}ms. The
more utilized the end-systems becomes the harder it is for
the SMT solver to find a solution. We remind the reader that
free tasks account for approximately 75% of the utilization
and communicating tasks for around 25%. The demand al-
gorithm eliminates, in the best case, up to 75% of the tasks
and therefore, even for a highly utilized end-system, the size
of the SMT problem becomes significantly smaller.
The runtime of the scheduling method is dependent on a

number of factors, the most important of them being the
number of frames that need to be scheduled. However,
as can be seen from the previous figures, there is a non-
monotonic relationship between the various variables and
the runtime of the algorithm. The number of frames has
a complex dependency on the macrotick, the hyperperiod,
the relation and length of the periods, the topology, etc. It
is therefore hard to find a monotonic relationship between
these variables and the complexity of the problem. However,
there is a monotonic relationship between the number of as-
sertions and the runtime, and, to a lesser degree, between the

Utilization

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

SMT assertions

10 ms

1 sec

1 min

100 min

S (2, 4, 64, 16) M (4, 16, 256, 64) L (8, 48, 768, 192)

tim
e

tim
e-

ou
t

MESH demand
MESH one-shot

RING demand
RING one-shot

(a) P
1

= {10, 20, 25, 50, 100}ms

10 ms

1 sec

1 min

100 min

S (2, 4, 64, 16) M (4, 16, 256, 64) L (8, 48, 768, 192)

tim
e

tim
e-

ou
t

MESH demand
MESH one-shot

RING demand
RING one-shot

(b) P
2

= {10, 30, 100}ms

10 ms

1 sec

1 min

100 min

S (2, 4, 64, 16) M (4, 16, 256, 64) L (8, 48, 768, 192)

tim
e

tim
e-

ou
t

MESH demand
MESH one-shot

RING demand
RING one-shot

(c) P
3

= {50, 75}ms

Figure 3: Runtime for mesh and ring topologies with MT = 250µsec, U = 50%.

10 ms

1 sec

1 min

100 min

S (4, 6, 96, 24) M (13, 36, 576, 144) L (15, 48, 768, 192)

tim
e

tim
e-

ou
t

TREE demand
TREE one-shot

(a) P
1

= {10, 20, 25, 50, 100}ms

10 ms

1 sec

1 min

100 min

S (4, 6, 96, 24) M (13, 36, 576, 144) L (15, 48, 768, 192)

tim
e

tim
e-

ou
t

TREE demand
TREE one-shot

(b) P
2

= {10, 30, 100}ms

10 ms

1 sec

1 min

100 min

S (4, 6, 96, 24) M (13, 36, 576, 144) L (15, 48, 768, 192)

tim
e

tim
e-

ou
t

TREE demand
TREE one-shot

(c) P
3

= {50, 75}ms

Figure 4: Runtime for the tree topology with MT = 250µsec, U = 50%.

10 ms

1 sec

1 min

100 min

25 50 75

tim
e

average end-system utilization [%]

P={10, 20, 25, 50, 100}[ms], HP=100ms, MT=250µsec, Size=S, T=MESH

tim
e-

ou
t

one-shot
demand

Figure 6: Runtime as a function of the average end-

system utilization.

sponsiveness of the system but introduce more overhead due
to more frequent timer interrupt invocations and context
switches. The macrotick also has an impact on the runtime
of our method, a bigger macrotick leads to tasks generating
less virtual frames but decreases the solution space (simi-
lar to the raster method for network links). In Figure 5
we compare the runtime of the one-shot and demand algo-
rithm (logarithmic y-axis) as a function of the macrotick
length (x-axis). All values were obtained using the small
mesh topology with 50% task utilization, period configura-
tion {10, 20, 25, 50, 100}, and macrotick values between 50µs
and 0.5ms. As can be seen, the smaller the macrotick is,
the longer it takes to find a schedule due to the increas-
ing number of virtual frames generated by the tasks on the
end-system CPUs.

In Figure 6 we compare the runtime of the demand and
one-shot methods (logarithmic y-axis) as a function of the
average end-system utilization (x-axis) for a small mesh
topology where each end-system has a macrotick of 250µs
and the task and message periods are chosen randomly from

 0

 50000

 100000

 150000

 200000

 250000

100 ms 1 sec 1 min 30 min
 0

 500

 1000

 1500

 2000

 2500

 3000

as
se

rti
on

s

fr
am

es

runtime

MT=250µsec, ALG=DEMAND

assertions (left y-axis)
frames (right y-axis)

Figure 7: Assertions and frames as a function of the

runtime.

the period configuration set {10, 20, 25, 50, 100}ms. The
more utilized the end-systems becomes the harder it is for
the SMT solver to find a solution. We remind the reader that
free tasks account for approximately 75% of the utilization
and communicating tasks for around 25%. The demand al-
gorithm eliminates, in the best case, up to 75% of the tasks
and therefore, even for a highly utilized end-system, the size
of the SMT problem becomes significantly smaller.
The runtime of the scheduling method is dependent on a

number of factors, the most important of them being the
number of frames that need to be scheduled. However,
as can be seen from the previous figures, there is a non-
monotonic relationship between the various variables and
the runtime of the algorithm. The number of frames has
a complex dependency on the macrotick, the hyperperiod,
the relation and length of the periods, the topology, etc. It
is therefore hard to find a monotonic relationship between
these variables and the complexity of the problem. However,
there is a monotonic relationship between the number of as-
sertions and the runtime, and, to a lesser degree, between the

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Conclusions

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Conclusions

co-synthesis of task and message schedules

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Conclusions

co-synthesis of task and message schedules
preemptive tasks

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Conclusions

co-synthesis of task and message schedules
preemptive tasks
switched multi-speed TTEthernet networks

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Conclusions

co-synthesis of task and message schedules
preemptive tasks
switched multi-speed TTEthernet networks
satisfiability modulo theories

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Conclusions

co-synthesis of task and message schedules
preemptive tasks
switched multi-speed TTEthernet networks
satisfiability modulo theories
demand based approach

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Conclusions

co-synthesis of task and message schedules
preemptive tasks
switched multi-speed TTEthernet networks
satisfiability modulo theories
demand based approach
scales for medium to large industrial systems

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

Thank you!

www.tttech.com

www.tttech.com Copyright © TTTech Computertechnik AG. All rights reserved.

SMT-scheduled frames

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

0

20

40

60

80

100

SM
T-

sc
he

du
le

d
fra

m
es

re
du

ct
io

n
[%

]

one-shot (left y-axis)
demand (left y-axis)

reduction (right y-axis)

0
1
2

M
ESH small P1

M
ESH small P2

M
ESH small P3

M
ESH medium P1

M
ESH medium P2

M
ESH medium P3

M
ESH large P1

M
ESH large P2

M
ESH large P3

RING small P1
RING small P2
RING small P3
RING medium P1

RING medium P2

RING medium P3

RING large P1
RING large P2
RING large P3
TREE small P1
TREE small P2
TREE small P3
TREE medium P1

TREE medium P2

TREE medium P3

TREE large P1
TREE large P2
TREE large P3

retries

